
15th Cologne-Twente Workshop
on Graphs and Combinatorial

Optimization

Cologne, Germany, June 6-8, 2017

Extended Abstracts

Bert Randerath, Heiko Röglin, Britta Peis, Oliver Schaudt, Rainer Schrader,
Frank Vallentin, Vera Weil (eds.)

hh

Scientific Committee

Ali Fuat Alkaya (U Marmara)

Albert Ceselli (U Milano)

Roberto Cordone (U Milano)

Ekrem Duman (U Ozyegin)

Ulrich Faigle (U Köln)

Johann L. Hurink (U Twente)

Leo Liberti (CNRS France)

Bodo Manthey (U Twente)

Gaia Nicosia (U Roma Tre)

Andrea Pacifici (U Roma Tor Vergata)

Stefan Pickl (UBw München)

Bert Randerath (TH Köln)

Giovanni Righini (U Milano)

Heiko Röglin (U Bonn)

Britta Peis (RWTH Aachen)

Oliver Schaudt (U Köln)

Rainer Schrader (U Köln)

Rüdiger Schultz (U Duisburg-Essen)

Organizing Committee

Bert Randerath

Heiko Röglin

Britta Peis

Oliver Schaudt

Rainer Schrader

Frank Vallentin

Vera Weil

Local Organization

Alexander Apke

Toni Böhnlein

Jun-Gyu Kim

Roland Mainka

Martin Olschewski

Andrea Oversberg

Fabian Senger

I

hh

II

hh

Table of Contents

Saverio Basso, Marco Casazza and Alberto Ceselli
Heuristics for a Green Orienteering Problem 1

Andrea Baum and Yida Zhu
The Axiomatization of Affine Oriented Matroids Reassessed 3

Enrico Bettiol, Lucas Létocart, Francesco Rinaldi and Emil-
iano Traversi
Simplicial Decomposition for Large-Scale Quadratic Convex
Programming

7

Viktor Bindewald and Moritz Mühlenthaler
Robust Bipartite Matching Augmentation 11

Toni Böhnlein, Stefan Kratsch and Oliver Schaudt
Revenue maximization in Stackelberg Pricing Games: Beyond
the combinatorial setting

15

Christoph Brause and Michael Henning
Independent Domination in Bipartite Cubic Graphs 19

Maurizio Bruglieri, Roberto Cordone and Vincenzo Caurio
A metaheuristic for the Minimum Gap Graph Partitioning
Problem

23

Christoph Buchheim and Jonas Prünte
Complexity of K-Adaptable Stochastic Programming 27

Eglantine Camby and Gilles Caporossi
Research on the Price of Connectivity for the vertex cover
problem and the dominating set problem, with the help of
the system GraphsInGraphs

31

Marco Casazza, Alberto Ceselli and Roberto Wolfler Calvo
Inventory rebalancing in bike-sharing systems 35

Alberto Ceselli, Marco Fiore, Marco Premoli and Stefano Secci
Dynamic Cloudlet Assignment Problem: a Column Generation
Approach

39

III

Sankardeep Chakraborty, Seungbum Jo and Srinivasa Rao
Satti
Improved Space-efficient Linear Time Algorithms for Some
Classical Graph Problems

43

Sourav Chakraborty and Nitesh Jha
Exact Algorithms for Maximum Transitive Subgraph Problem 49

Roberto Cordone, Giovanni Righini and Andrea Taverna
Upper and lower bounds for the Swath Segment Selection
Problem

53

Paolo Detti, Gaia Nicosia, Andrea Pacifici and Garazi Zabalo
Manrique de Lara
Robust single machine scheduling with a flexible maintenance
activity

57

Trung Duy Doan, Christoph Brause and Ingo Schiermeyer
2-proper connection number of graphs 61

Debarshi Dutta, Kishore Kothapalli, Gadhamsetty Ramakr-
ishna, Sai Charan Reguntas and Sai Harsh Tondomker
An Efficient Ear Decomposition Algorithm 65

Dominik Ermel and Matthias Walter
Parity Polytopes and Binarization 69

A.M.C. Ficker, Frits Spieksma and Gerhard J. Woeginger
The Transportation Problem with Conflicts 73

Samuel Fiorini
A 3/2-Approximation Algorithm for Tree Augmentation via
Chvàtal-Gomory Cuts

77

Marina Groshaus and Leandro Montero
Distances between bicliques and structural properties of bi-
cliques in graphs

79

Shahadat Hossain and Ashraful Huq Suny
Determination of Large Sparse Derivative Matrices: Structural
Orthogonality and Structural Degeneracy

85

Ayumi Igarashi, Frédéric Meunier and Adèle Pass-Lanneau
Computing kernels in graphs with a clique-cutset 89

IV

Thomas Kesselheim and Andreas Tönnis
Submodular Secretary Problems: Cardinality, Matching, and
Linear Constraints

93

Stefan Klootwijk and Bodo Manthey
Probabilistic Analysis of Facility Location on Random Shortest
Path Metrics

97

Dmitrii Lozovanu and Stefan Pickl
Determining the Optimal Pure Strategies for Average Markov
Decision Problem

101

Bodo Manthey and Victor M.J.J. Reijnders
Probabilistic Properties of Highly Connected Random Geo-
metric Graphs

105

Ruxandra Marinescu-Ghemeci
Radio connectivity of graphs 109

Misa Nakanishi
Domination structure with nonempty minimal edge set for cu-
bic graphs

113

Britta Peis, José Verschae and Andreas Wierz
The Greedy Algorithm for Capacitated Covering Problems 117

Shariefuddin Pirzada and Hilal A. Ganie
Brouwer’s conjecture on the sum of Laplacian eigenvalues of a
graph

121

Stephen Raach and Sven de Vries
Geometry of gross substitutes valuations 125

Oliver Schaudt
Coloring H-free Graphs: Structure, Algorithms, Open Prob-
lems

129

Oliver Schaudt and Fabian Senger
The Parameterized Complexity of the Equidomination Prob-
lem

131

Helmut A. Sedding
Scheduling of Time-Dependent Asymmetric Nonmonotonic
Processing Times permits an FPTAS

135

V

Dimitri Thomopulos, Wim van Ackooij, Claudia D’Ambrosio,
Leo Liberti, Raouia Taktak and Sonia Toubaline
A path-based formulation for the Hydro Unit Commitment
and Scheduling problem

139

Ismael González Yero
K-metric antidimension in graphs and anonymity in social net-
works

143

VI

Heuristics for a Green Orienteering
Problem

Saverio Basso1, Marco Casazza1, and Alberto Ceselli1

1Università degli Studi di Milano, Dipartimento di Informatica, Italy.

We address a routing problem where a vehicle with limited time, loading capac-
ity and battery autonomy can optionally serve a set of customers, each providing a
profit. Such a problem is of particular relevance both because of its practical impli-
cations in sustainable transportation and its use as a sub-problem in Green Vehicle
Routing column generation algorithms. We propose a dynamic programming ap-
proach to obtain both primal and dual bounds to the value of the optimal solutions,
a fast greedy heuristics and a very large scale neighbourhood search procedure.

1 Introduction

Pushed by the constant increase in gasoline costs, and eco-sustainability awareness of con-
sumers, the market share of vehicles powered by alternative fuels is increasing steadily. In
traditional routing problems, fuel autonomy is typically assumed sufficient to serve all cus-
tomers because of both the big size of the tank and the short refuelling time. However, such
conditions do not hold for vehicles running on alternative fuels such as electric batteries, whose
full recharge can take up to several hours. Therefore, an explicit planning of the refuelling stops
is required to satisfy time constraints, such as in [3].

Within this context we address the Green Orienteering Problem (GOP), a variant of the
Orienteering Problem [2] involving a single vehicle running on electric batteries only. Each
time the vehicle visits a customer it collects a profit. However, to travel between customers
the vehicle consumes both battery and time resources. Recharge stations are available on the
network, which are equipped with different recharging technologies, offering different trade-off
between recharge time and cost. During its route, the vehicle can stop at recharge stations,
selecting a particular technology and the amount of energy to be recharged. A fixed cost is
always paid at each recharge. The aim is to find a route that maximizes the difference between
collected profits and recharge costs, in such a way that (a) a time limit is not exceeded, (b)
the loading capacity of the vehicle is not exceeded when serving customer demands, and (c)
the vehicle never runs out of battery.

Our GOP is of particular relevance since it arises as a sub-problem in Green Vehicle Routing
Problems [1] when they are solved exploiting column generation techniques. We propose a
methodology based on dynamic programming to obtain both primal and dual bounds to the
value of optimal solutions, a fast greedy algorithm, and a very large scale neighbourhood search
procedure.

1

2 Modelling

The GOP can be formulated as follows: let G = (V ∪R,E) be an undirected graph, where V
is the set of customer vertices, R is the set of station vertices, and E = {(i, j) | i, j ∈ V ∪ R}
is a set of edges connecting them. To perform customer visits we are given a single vehicle
of limited loading capacity Q and limited time availability T , equipped with a battery of
maximum charge B. The vehicle starts and ends at a depot o ∈ R. Each time the vehicle
visits a customer i, it serves a demand qi and collects a profit pi using si units of time. Also,
when the vehicle travels along an edge (i, j) ∈ E it consumes d(i,j) units of battery charge and
t(i,j) units of time. We assume qi = pi = 0 for each i 6∈ V .

The vehicle cannot travel if the battery charge reaches zero, but it can be recharged at each
station vertex r ∈ R \ {r0} using one out of a set K of technologies. Each technology k ∈ K
provides bk battery charge units for each unit of time at a cost ck for each unit of battery
recharged. Also, a fixed cost f is paid at each recharge. Mixing technologies during the same
recharge stop is forbidden.

A route ρ = ((i1, δ1, k1), . . . , (in, δn, kn)) is a sequence of triplets describing the customers
visited, the order of visits, and charge information, where i ∈ V ∪R is a vertex and δ is the time
spent recharging the vehicle at vertex i using technology k. When i is a customer, recharge is
forbidden: δ is fixed to 0 and k is set to a dummy value. A route is feasible if:

• there is an edge between vertices of two following triplets: ∃(iσ, iσ+1) ∈ E,∀σ = 1 . . . n−1;

• it does not exceed the time limit:
∑n−1

σ=1 t(iσ ,iσ+1) +
∑n

σ=1 siσ +
∑n

σ=1 δσ ≤ T ;

• it does not exceed the capacity:
∑n

σ=1 qiσ ≤ Q;

• the battery level is always between 0 and B:
∑σ′−1

σ=1 δσbkσ − d(iσ ,iσ+1) ≥ 0, ∀σ′ = 2 . . . n

and δσ′bk′σ +
∑σ′−1

σ=1 δσbkσ − d(iσ ,iσ+1) ≤ B, ∀σ′ = 2 . . . n.

A route is optimal if it is feasible and its value, computed as the difference between collected
profits and recharge costs, is maximum: max

∑n
σ=1|iσ∈V piσ −

∑n
σ=1|iσ∈R f + δσbkσckσ .

3 Algorithms

We propose a methodology to obtain both primal and dual bounds to the value of the optimal
solutions of GOP. We start from a simple observation:

Observation 1. If a utopia technology having recharge speed b̂ = maxk∈K bk and recharge cost
ĉ = mink∈K ck exists, it would always be profitable to select it.

That is, all the other technologies would be dominated. We accordingly define the Utopia
Technology GOP (UT-GOP), where we suppose that at each station, such an additional utopia
technology is available (and therefore always selected), and we prove that:

Observation 2. any sequence of visits yielding a feasible UT-GOP route, and in particular
an optimal one, yields a feasible GOP route as well.

Proposition 1. The value of an optimal UT-GOP solution is a dual bound to GOP.

To solve to optimality the UT-GOP we define a label correcting algorithm having the fol-
lowing structure:

2

Label structure: partial routes starting from the depot r0 and ending in vertex i are encoded
as labels λ = (i, Ṽ , p, x, y, z) where p is the profit of the partial route computed as the
difference of the collected profits and the recharge costs, Ṽ is the set of customer vertices
visited in the partial route, x is the potential battery level, y is the residual time, and z
is the residual capacity.

Initialization: an initial label λ = (r0, ∅, 0, B, T,Q) is created and marked as ‘open’.

Extension: at each iteration an open label λ = (i, Ṽ , p, x, y, z) having maximum p value is
selected and for each edge (i, j) ∈ E a new label λ′ = (j, Ṽ ′, p′, x′, y′, z′) is created.
If vertex j is a customer, that is j ∈ V , we set p′ = p + pj − d(i,j)ĉ, Ṽ

′ = Ṽ ∪ {j},
x′ = x − d(i,j), y

′ = y − t(i,j) − sj − d(i,j)/b̂, and z′ = z − qj . Otherwise, if j ∈ R,

p′ = p− f − d(i,j)ĉ, Ṽ ′ = Ṽ , x′ = x− d(i,j), y′ = y − t(i,j) − d(i,j)/b̂, and z′ = z. Label λ
is marked as ‘closed’ while λ′ as ‘open’. Extension is not performed when x′ < 0, y′ < 0,
or z′ < 0, which encode an infeasible route.

Recharge: when a label λ = (i, Ṽ , p, x, y, z) is created at a vertex i ∈ R, the potential battery
level is fully charged by setting x = B.

Dominance: after extension, if two labels λ′ = (i, Ṽ ′, p′, x′, y′, z′) and λ′′ = (i, Ṽ ′′, p′′, x′′, y′′, z′′)
are found, having p′ ≥ p′′, Ṽ ′ ⊆ Ṽ ′′, x′ ≥ x′′, y′ ≥ y′′, and z′ ≥ z′′, and at least one of
these inequalities is strict, then label λ′′ is deleted being sub-optimal.

Stopping criteria: we stop when no ‘open’ label is left.

According to Observation 2 by optimizing the UT-GOP we obtain a sequence of visits
allowing to build a feasible GOP route, thereby obtaining a primal bound. In particular,
we need to adjust the technology selection and amount of recharge done at each station.
To perform such an adjustment we formulate a new optimization problem where given an
incomplete route ρ, we have to find δ and k values in such a way that the route is still feasible
and it minimizes the recharge costs.

Let R̃ be the set of recharge stations visited in ρ. W.l.o.g. if a station r is visited more than
once, R̃ contains its copies r′, r′′, and so on. The problem of adjusting recharge quantities is

3

formulated as follows:

min
∑

r∈R̃

∑

k∈K
ckbkyrk (1)

s.t.
∑

k∈K
xrk ≤ 1 ∀r ∈ R̃ (2)

∑

r∈R̃

∑

k∈K
yrk ≤ T −

n−1∑

σ=1

t(iσ ,iσ+1) (3)

σ′−1∑

σ=1|iσ∈R̃

∑

k∈K
bkyiσk −

σ′−1∑

σ=1

d(iσ ,iσ+1) ≥ 0 ∀σ′ = 2 . . . n (4)

σ′∑

σ=1|iσ∈R̃

∑

k∈K
bkyiσk −

σ′−1∑

σ=1

d(iσ ,iσ+1) ≤ B ∀σ′ = 2 . . . n (5)

bkyrk ≤ Bxrk ∀r ∈ R̃, k ∈ K (6)

yrk ≥ 0, xrk ∈ B ∀r ∈ R̃, k ∈ K (7)

where yrk is the time spent at station r recharging the vehicle with technology k and xrk is a
binary variable that is 1 if technology k is used at station r, 0 otherwise. The objective function
(1) minimizes recharge costs. Constraints (2) forbid mixing technologies in a single station.
Constraint (3) enforces the time limit. Constraints (4) and (5) ensure that the vehicle does
not travel with empty battery and the maximum battery level is never exceeded, respectively.
Constraints (6) enforce that variables xrk are set to 1 when a technology is used in a station.

Greedy heuristic and very large scale neighbourhood search. We also propose a
greedy heuristic for GOP that iteratively moves between vertices until the vehicle runs out
of battery or time resources. At each step, the algorithm selects one out of three possible
operations: (a) move the vehicle to the neighbour customer maximizing the difference between
the collected profit and the travelling cost, (b) take a detour to a recharge station if no cus-
tomer can be visited with current resources, or (c) go back to depot if the previous operations
invalidate route feasibility.

Once a route is built, we re-optimize the technology selection and energy recharge amounts by
optimizing a MIP sub-problem similar to (1) – (7), that corresponds to exploring a neighbour-
hood whose size is exponential in the number of stations. Such an optimization is performed
by means of general purpose MIP solvers.

References

[1] A. Ceselli, A. Felipe, M.T. Ortuño, G. Righini, and G. Tirado, A branch-and-cut-and-
price algorithm for the green vehicle routing problem with partial recharge and multiple
technologies, Odysseus 2015, Ajaccio (2015).

[2] P. Vansteenwegen, W. Souffriau, and D. Oudheusden, The orienteering problem: A survey,
European Journal of Operational Research (2011).

[3] M. Schneider, A. Stenger, and D. Goeke, The Electric Vehicle Routing Problem with Time
Windows and Recharging Stations, Transportation Science (2014).

4

A Characterization of Affine Oriented Matroids
Abstract for CTW 2017

Andrea Baum1 and Yida Zhu2

1Department of Mathematics, University of Hamburg, 20146 Hamburg, Germany
2RTG Algorithmic Optimization, Department of Mathematics, University of Trier, 54296 Trier, Germany

Oriented matroids can be thought of as combinatorial abstractions of real hyperplane arrange-
ments, which arise as fundamental objects in various mathematical theories such as inequality
systems in linear programming, facets of convex polytopes and so on. Affine oriented matroids
are the corresponding abstraction of affine hyperplane arrangements.

The standard axiomatization of oriented matroids requires a common intersection of all hy-
perplanes in the arrangement and thus does not extend naturally to the affine context. In an
unpublished manuscript [2], Johan Karlander has given an axiomatization of affine oriented ma-
troids by identifying every parallel class of affine hyperplanes with a sign vector (parallel vector),
resembling the point at infinity from projective geometry.

Arrangement of hyperplanes and sign vector system

− +

Ha

−

+
Hb

(−,−) (+,−)

(+,+)(−,+)

Figure 1: Partition of R2.

A finite family H = {He : e ∈ E} of hyperplanes in Rd is called
an arrangement of hyperplanes. The arrangement is affine if its
hyperplanes are. We focus on the combinatorial structure of such
arrangements, that is, how those hyperplanes partition the space.

Every point x ∈ Rd will be assigned to a sign vector given by
(Xi)i∈E ∈ {+,−, 0}E , where Xi tells the position of x regarding
Hi, see Figure 1. The system of all different sign vectors (SVS)
induced by H forms the covector system of an oriented matroid [1,
chapter 2]. In general, [1, 4.1.1] give an axiomatization of such SVS.
One of this axioms requires that all hyperplanes have a common
intersection. Certainly, this axiom is no longer valid by generalizing
the concept to affine arrangements: two affine hyperplanes may be
parallel to each other.

Affine arrangement and affine oriented matroid

In the case
⋂

e∈E He = ∅, one has to raise the dimension by 1 and add a hyperplane into the
embedded arrangement, such that all axioms in [1, 4.1.1] are fulfilled in the embedded system
(which forms an oriented matroid), as illustrated in Figure 2. Note that the partition of R2 can
be found in any affine hyperplane {(x, y, z) ∈ R3 : z = c} in R3. From this perspective, the
SVS induced by some affine arrangement is actually a subset of some oriented matroid in higher
dimension, more precisly: If W ⊆ {+,−, 0}E is a SVS induced by some affine arrangement, then

5

X

Y

H2 H1

(a) Arrangement of parallel affine hyperplanes in R2.

X

Z Y

z = c

(b) Embedded arrangement of hyperplanes in R3.

Figure 2: Embedding process to avoid
⋂

e∈E He = ∅.

there exists some oriented matroid O ⊆ {+,−, 0}E+z such that O = {(X,+) : X ∈ W}. We call
such SVS affine oriented matroid.

Sign vectors corrsponding to points at infinity

In order to demonstrate the idea of parallel vectors, we consider the real space R3 as the interior
of a unit ball (Figure 3b). The point at infinity of the parallel class {H1, H2} is presented by the
intersection of their embedded image, which does not belong to R3 (i.e., right on the shell). The
axiom of Karlander states a closure property of the affine oriented matroid W together with the
system P(W) of all parallel vectors.

x

z y

(a) A parallel class {H1, H2} of two hyperplanes in R2.

−P

P

(b) Corresponding parallel vectors P and −P .

Figure 3: Sketch for the concept of parallel vectors.

In the original work [2], there was a small gap in the main proof. However, the axiomatization
itself remains true. We offer an alternative construction to fix this issue and simplify the structure
of P(W) by including the entire horizon (the gray cycle on the shell in Figure 3b) into P(W).

References

[1] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, G.M. Ziegler, Oriented Matroids, Cam-
bridge Univ. Press, 1993.

[2] J. Karlander, A characterization of affine sign vector systems, in Zero-one matrices matroids
and characterization problems, pp. 67-91, Ph.D. Thesis KTH Stockholm, 1992.

6

Simplicial Decomposition for Large-Scale
Quadratic Convex Programming

Enrico Bettiol1, Lucas Létocart1, Francesco Rinaldi2, and Emiliano
Traversi1

1LIPN UMR CNRS 7030 Université Paris 13, Sorbonne Paris Cité, 99, avenue Jean-Baptiste Clément,
93430 Villetaneuse, France

2Università di Padova, Dipartimento di Matematica, Via Trieste, 63, 35121 Padova, Italia

We consider the following problem

min f(x) = x>Qx + c>x + d
s.t. Ax = b

x ≥ 0
(1)

with Q ∈Rn×n, c ∈Rn, d ∈R, A ∈Rm×n and b ∈Rm. When the size of the problem
is large, very often it is more convenient to take advantage of smart or ad-hoc
strategies to tackle the problem. Column generation, described for example in [3],
represents one of the most important ways to deal with large-scale problems. In thi
work we present a column generation algorithm called Simplicial Decomposition.
We develop new techniques in order to make it more efficient and we compare our
algorithm against the state-of-the-art software CPLEX. We present our algorithm
and show our results, obtained on portfolio optimization problems and on general
convex quadratic problems.

1 Simplicial Decomposition

The idea behind the Simplicial Decomposition (SD) algorithm is described in [5]. The original
problem is decomposed into two simpler subproblems, which are called pricing and master
problems, and are solved alternatively and repeatedly. The pricing solves the original problem
with a linear objective function and the master problem, instead, is a problem with the original
objective function, but with lower dimension and simplified constraints.

More specifically, starting from a single point, the domain of each master problem is the
convex hull of a finite set of (hopefully few) affinely independent points, i.e. a simplex, and
these points are the solution of the previous pricing problems: if Bk := {x1, . . . xk} is the set
of points after the kth iteration, the simplex Sk generated by these points can be represented
as a convex combination of the generators, so the dimension of the master is k � n.

On the other hand, each pricing problem is linear because it minimizes the gradient of the
original objective function in the optimal point of the previous master. In this way, it obtains
a descent direction, so the new master will be able to find points with lower cost; otherwise, if
no new points are found, the algorithm terminates.

7

2 Setting

We compare the SD algorithm with the state-of-the-art solver CPLEX. Furthermore, we in-
troduced some modifications in the SD algorithm, both for the pricing and for the master
problems, in order to improve the convergence.

2.1 Strategies for Efficiently Solving the Master

The master problem can be solved in various ways: a first one is directly using CPLEX itself
(namely SD - Cplex). We propose two other methods in order to speed up the computa-
tional time of the master problem, based respectively on the Conjugate Directions and on the
Projected Gradient Methods.

We introduce a new Adaptation of the (unconstrained) Conjugate Directions Method (SD -
ACDM) in order to exploit the particular structure of the simplices that are generated at each
iteration of the algorithm. The informations used to solve each master problem is reused to
solve the next one in a single iteration. In this way, we introduced a significant warm start,
that is not possible with CPLEX.

More specifically, we exploit the property that, for every master problem, the search for
the optimum starts from a point in the interior of a facet of its domain. So we develop and
prove the convergence of a method that proceeds in this way: it starts from the previous
optimum, it finds the new conjugate direction, it determines the optimum along this new
line with unconstrained techniques (described, for example, in [2]) and, if needed, it projects
the point onto the simplex, in order to get the constrained optimal point. In this case the
intersection with the boundary of the simplex is found and the method finds the optimal point
in the intersection face.

The second approach is a Fast Gradient Projection Method (FGPM) and belongs to the
family of gradient projection approaches.

2.2 Strategies for Efficiently Solving the Pricing

With respect to the pricing, it is always solved by CPLEX, however, we introduce some features
in order to improve its performance.

We introduce a family of cuts called shrinking cuts, in order to speed-up the solution of the
pricing and to generation more useful columns. The second strategy tested is the use of an
early stopping in the pricing problem: this reduces the computational time of the pricing and
is still sufficient to provide a descent direction at each cycle, which is enough to guarantee
the convergence of the algorithm. Finally, we tested the use of the sifting solver for CPLEX,
instead of the default settings.

3 Computational Results

We use two set of instances as test-bed: Portfolio Instances and Generic Quadratic Instances.
For lack of space, we report the results concerning only the Portfolio Instances. The results
related to Generic Quadratic instances are, however, similar.

In this section we report the performances of our algorithm in base of the different settings
used. Resuming, We use three methods for solving the master programs: Cplex, ACDM,

8

FGPM, which have been described before. Regarding the pricing problems, we evaluate the
following combinations of settings:
• Default • Sifting
• Cuts • Sifting + Cuts
• Early stopping • Sifting + Early stopping
• Cuts + early stopping • Sifting + Cuts + Early stopping

In Figure 1 we report the performance for the faster master solver, which is ACDM, for these
instances.

2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0
Default

Cuts

Early Stopping

Cuts+Early Stopping

Sifting

Sifting+Cuts

Sifting + Early Stopping

Sifting+Cuts+Early Stopping

Cplex

Figure 1: Performance profile for Portfolio, master solved with ACDM.

The best option for the pricing is Sifting + Early Stopping.
Now, Figure 2 shows the comparison among the three different SD master solvers and the

only-Cplex solver. For each SD method, the best pricing option (found analogously as for
the previous one) is used. For the Portfolio instances, the best setting for the pricing is

2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

SD Cplex

SD ACDM

SD FGPM

Cplex

Figure 2: Performance profile for Portfolio, master solvers.

9

Sifting+Early Stopping.

4 Conclusions

PORTFOLIO LOW M LARGE M

SD ACDM SD FGPM

SIFTING

EARLY STOPPING

CUTS

Table 1: Overview.

We presented an efficient approach to solve continuous quadratic problems based on Simpli-
cial Decomposition. We experimentally prove that our algorithm is more efficient than a generic
solver on the instances tested. To achieve this result, we proposed two ad-hoc techniques for
solving the master problem: the Conjugate Directions based Method (ACDM) and the Fast
Gradient Projection Method (FGPM); and three additional improvements on the standart
Simplicial Decomposition method: an Early Stopping techniques, a Shrinking method based
on additional cuts on the pricing and a specific way to solve the pricing problem via the sifting
algorithm. In Table 1, we summarize which setting is recommended in relation to the instances
we want to solve. The instances are sorted from left to right according to an increasing value
of M = m

n . For portfolio instances, the best master optimizer is ACDM and the best pricing
options are sifting and sifting with early stopping. The cuts play an important role and are the
best pricing option for the largely constrained problems. Moreover, for this class of problems
the best master solver is the Projected gradient.

References

[1] E.G. Birgin, J.M. Martinez and M. Raydan. Nonmonotone spectral projected gradient
methods for convex sets. SIAM Journal on Optimization 10, pp. 1196-1211, 2000.

[2] L. Grippo, M. Sciandrone. Metodi di ottimizzazione non vincolata. Springer, 2011.

[3] Larsson, Torbjörn, Athanasios Migdalas, and Michael Patriksson. A generic column gen-
eration scheme. 2006.

[4] Markowitz, H. Portfolio Selection. The Journal of Finance, Vol. 7, No. 1, pp. 77-91. March.
1952.

[5] B. Von Hohenbalken. Simplicial decomposition in nonlinear programming algorithms. Math-
ematical Programming 13 (1977) 49-68.

10

Robust Bipartite Matching Augmentation

Viktor Bindewald1 and Moritz Mühlenthaler1

1Fakultät für Mathematik, TU Dortmund, Vogelpothsweg 87, Dortmund

We investigate the complexity of making a given perfect matching in a bipartite
graph robust against the deletion of at most k edges by adding at most ` edges to
the graph. We show that for k = 1 the problem is NP-complete and it is W[2]-hard
when parametrized by `. We further show that the problem can be solved in time
O(mn + n2) if k = ` = 1. In addition, we show that the problem remains hard
if budget restrictions are imposed on repairing the matching, unless the budget is
very small.

1 Introduction

An augmentation problem asks how many edges need to be added to a graph in order to
have the resulting graph satisfy some desired property, such as bridge- or biconnectivity [5],
or hamiltonicity [6, GT34]. We consider an augmentation problem related to robust perfect
matchings in a bipartite graph: We call a perfect matching M in a graph G k-robust if, after
the deletion of at most k M -edges, G still admits a perfect matching.

Problem 1 (k-Robust Bipartite Matching `-Augmentation). Given a simple bipartite
graph G = (X + Y,E) and a perfect matching M in G, can we make M k-robust by adding at
most ` XY -edges to G?

Robust decision problems are often phrased as follows: The task is to determine if some
infrastructure, say a graph G, has some desired property, no matter what goes wrong. For
example, after removing at most k edges from G, does the resulting graph contain some
structure of interest such as a spanning tree [2], a perfect matching [1, 4], or an st-path [3].
Such problems and their optimization variants are often hard even if the underlying nominal
problems can be solved in polynomial time. In our setting, we are given a graph and a fixed
structure of interest, i.e., a perfect matching, and would like to harden the infrastructure by
adding a certain number of edges to the graph. In other words we are addressing the following
question: Is it easier to harden existing infrastructure rather than designing a robust one from
scratch? However, our results indicate that in general the answer is no, as implied by our main
result.

Theorem 2. 1-Robust Bipartite Matching `-Augmentation is NP-complete.

In order to prove Theorem 2, we use a reduction from Set Cover. In addition to NP-
hardness, the reduction implies that 1-Robust Bipartite Matching `-Augmentation is
W[2]-hard when parametrized by `. Furthermore, there is no polynomial time constant-factor

11

approximation for the problem of minimizing `. On the positive side, we show that a 1-
Robust Bipartite Matching `-Augmentation instance with ` = 1 can be solved in time
O(mn + n2), where m is the size of the input graph and n is its order.

In [4], a related robust decision problem is considered, where the matching is not fixed and
there is an additional budget restriction for repairing a matching after removing at most k
edges from the input graph. A perfect matching M in a graph G = (V,E) is k-robust s-
recoverable, if for each set F ⊆ E of cardinality at most r, G − F has a perfect matching N
such that the symmetric difference M 4N contains at most s edges. Dourado et al. proved
the following hardness result by a reduction from 3Sat:

Theorem 3 ([4, Theorem 3]). For any s ≥ 2 it is NP-complete to decide if a given bipartite
graph G admits a 1-robust 2s-recoverable perfect matching.

The proof of our main result also implies that the following augmentation problem is NP-
complete for any s ≥ 3:

Problem 4 (1-Robust s-Recoverable Bipartite Matching `-Augmentation). Given
a simple bipartite graph G = (X +Y,E) and a perfect matching M in G, can make M 1-robust
2s-recoverable by adding at most ` XY -edges edges to G?

Quite surprisingly, it turns out, that the problem can be solved in polynomial time if s = 2,
by a reduction to the Minimum Cost Edge Cover problem.

2 Our Results

If k and ` are fixed, then k-Robust Bipartite Matching `-Augmentation can be solved
in polynomial time using a brute-force approach: Let G = (V,E) be the bipartite complement
of the input graph G = (V,E). Check for each U ⊆ E of cardinality at most ` if the matching
M is k-robust in G + U . In order to test if G + U is k-robust, check for each subset M ′ of
M of size at most k, if G−M ′ has a perfect matching. It follows that k-Robust Bipartite
Matching `-Augmentation is in XP. For instance, for k = ` = 1, the brute-force approach
has a running time of O(m2 · Tpm(m,n)), where m is the size of G, n is the order of G and
Tpm(m,n) is the time required for computing a perfect matching in a bipartite graph of size
m and order n (e.g., the Hopcroft-Karp algorithm yields Tpm(m,n) = O(

√
n(m + n)) [7]). It

turns out that for k = ` = 1 we can significantly improve upon the brute-force approach:

Theorem 5. 1-Robust Bipartite Matching 1-Augmentation can be decided in time
O(mn + n2).

We give a brief overview of the algorithmic ideas. Let I = 〈G,M〉 be an instance of 1-
Robust Bipartite Matching 1-Augmentation. We call an M -edge 1-redundant if it is
contained in an M -alternating cycle in the graph. Clearly, I is a Yes-instance if and only if we
can enforce that each M -edge is 1-redundant after adding at most one edge to G. The following
simple proposition tells us that we cannot consider M -edges in isolation when checking this
property:

Proposition 6. Let v, w ∈ V be two non-adjacent vertices joined by an M -alternating path of
odd length that starts with an M -edge. Then each M -edge on any M -alternating vw-path is
1-redundant in G + vw.

12

t

S1 S2

a b c

Figure 1: Illustration a graph and a perfect matching obtained by the reduction from Set
Cover to 1-Robust Bipartite Matching `-Augmentation. The corresponding
Set Cover instance has two sets {S1, S2}, where S1 = {a, b} and S2 = {a, c}.

In order to efficiently identify those M -edges which are not 1-redundant, we consider an
directed auxiliary graph G′ = (V ′, A) whose construction somewhat similar that of the alter-
nating tree used in Edmond’s blossom algorithm. Let x be an arbitrary vertex of G. Note that
this can be shown that for our purposes the choice of x is irrelevant if G is bipartite. We say
that a vertex is even (odd), if it can be reached from x by an M -alternating path of even (odd)
length. The vertex set V ′ of G′ is the set of all even vertices of G. The arc set A is given by

A := {uw | ∃u,w ∈ V ′, v ∈ V : uv ∈M,vw ∈ E \M}.

It is not hard to see that each trivial strong component of G′ corresponds to an M -edge
that is not 1-redundant. Let us consider the condensation C(G′) of G′, that is, the graph of
strongly connected components of G′. If C(G′) contains no trivial strong components then M
is 1-robust and therefore we have a Yes instance. Otherwise, our task is to identify a source
s and a sink t of C(G′) such that every trivial strong component is on some st-path. This
can be done performing two passes over the nodes of C(G′) in (reverse) topological order.
By performing O(n) of bookkeeping for each edge, we can identify sources and sinks that are
connected to each trivial strong component. If there is at least one source and one sink that
is connected to each trivial component then we have a Yes-instance, otherwise we have a No-
instance. Due to our main result, Theorem 2, it is unlikely that we can extend our technique
to arbitrary choices of `.

We now illustrate by example how the reduction works that we used in the proof of The-
orem 2. Given the set family {S1, S2} on the ground-set {a, b, c}, where S1 = {a, b} and
S2 = {a, c}, we construct the graph and the perfect matching shown in Figure 1. The match-
ing edges are the wiggly ones. Essentially, each of the edges labeled a, b, c corresponds to the
item with the same label in the ground-set {a, b, c}. The 4-cycle containing the nodes labeled
S1 (S2) corresponds to set S1 (S2) and is wired to the edges a, b, and c correspondingly. In the
light of Proposition 6, for i ∈ {1, 2}, adding the edge tSi corresponds to the selection of the set

13

Si. It can be proved that any selection of ` additional edges that makes each matching edge
1-redundant corresponds to a set cover of size at most ` in the original instance. Therefore, the
hardness results mentioned in the introduction follow. Note that adding an edge tSi creates
an alternating cycle of length six. This implies that the reduction from Set Cover can also
be used in order prove to the hardness of 1-Robust s-Recoverable Bipartite Matching
`-Augmentation for any s ≥ 3.

3 Conclusions and Open Problems

We have shown that, in the setting of perfect matchings in bipartite graphs, making a given
perfect matching robust by augmentation is in general as hard as deciding if a graph admits a
robust matching. Here is a selection of interesting topics for future investigations:

• Can we improve upon the brute-force approach to k-Robust Bipartite Matching
`-Augmentation for k 6= 1 and ` 6= 1?

• Is 1-Robust Bipartite Matching `-Augmentation W[2]-complete?

• How hard is k-Robust Bipartite Matching 0-Augmentation?

References

[1] David Adjiashvili, Viktor Bindewald, and Dennis Michaels. Robust Assignments via Ear
Decompositions and Randomized Rounding. In ICALP 2016, volume 55 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 71:1–71:14, Dagstuhl, Germany, 2016.

[2] David Adjiashvili, Sebastian Stiller, and Rico Zenklusen. Bulk-robust combinatorial opti-
mization. Mathematical Programming, 149(1-2):361–390, 2015.

[3] Christina Büsing. Recoverable robust shortest path problems. Networks, 59(1):181–189,
2012.

[4] Mitre C. Dourado, Dirk Meierling, Lucia D. Penso, Dieter Rautenbach, Fabio Protti, and
Aline Ribeiro de Almeida. Robust recoverable perfect matchings. Networks, 66(3):210–213,
2015.

[5] Kapali P. Eswaran and Robert E. Tarjan. Augmentation problems. SIAM Journal on
Computing, 5(4):653–665, 1976.

[6] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[7] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

14

Revenue maximization in Stackelberg
Pricing Games: Beyond the combinatorial

setting

Toni Böhnlein1, Stefan Kratsch2, and Oliver Schaudt1

1Universität zu Köln, Institut für Informatik, Weyertal 80, 50321 Köln,,
boehnlein@zpr.uni-koeln.de, schaudto@uni-koeln.de

2Universität Bonn, Institut für Informatik, Friedrich-Ebert-Allee 144, 53113 Bonn,
kratsch@cs.uni-bonn.de

In a Stackelberg Pricing Game a distinguished player, the leader, chooses prices
for a set of items, and the other players, the followers, each seek to buy a minimum
cost feasible subset of the items. The goal of the leader is to maximize her revenue,
which is determined by the sold items and their prices. Most previously studied
cases of such games can be captured by a combinatorial model where we have a
base set of items, some with fixed prices, some priceable, and constraints on the
subsets that are feasible for each follower. In this combinatorial setting, Briest
et al. and Balcan et al. independently showed that the maximum revenue can be
approximated to a factor of Hk ∼ log k, where k is the number of priceable items.

Our results are twofold. First, we strongly generalize the model by letting the
follower minimize any continuous function plus a linear term over any compact
subset of Rn

≥0; the coefficients (or prices) in the linear term are chosen by the
leader and determine her revenue. In particular, this includes the fundamental
case of linear programs. We give a tight lower bound on the revenue of the leader,
generalizing the results of Briest et al. and Balcan et al. Besides, we prove that it is
strongly NP-hard to decide whether the optimum revenue exceeds the lower bound
by an arbitrarily small factor. Second, we study the parameterized complexity of
computing the optimal revenue with respect to the number k of priceable items. In
the combinatorial setting, given an efficient algorithm for optimal follower solutions,
the maximum revenue can be found by enumerating the 2k subsets of priceable items
and computing optimal prices via a result of Briest et al., giving time O(2k|I|c)
where |I| is the input size. Our main result here is a W[1]-hardness proof for
the case where the followers minimize a linear program, ruling out running time
f(k)|I|c unless FPT = W[1] and ruling out time |I|o(k) under the Exponential-Time
Hypothesis.

1 Introduction

Pricing problems are fundamental in both economics and mathematical optimization. In this
paper we study such pricing problems formulated as games, which are usually called Stackelberg

15

Pricing Games [10]. In our setting, in order to maximize her revenue one player chooses prices
for a number of items and one or several other players are interested in buying these items.
Following the standard terminology, the player to choose the prices is called the leader while the
other players are called followers. Depending on the follower’s preferences, computing optimal
prices can be a computational non-trivial problem. In a setting where followers have valuations
over individual items only, the problem is simple. If, however, valuations become more complex,
e.g., over whole subsets of items, pricing problems become much harder–also in a formal sense.

Largely the literature has focused on what we call the combinatorial setting : there is a set Y
of items and one follower seeks to buy a feasible subset. Some of the items have fixed costs, the
others have prices that are chosen by the leader. If the follower buys a feasible subset S ⊆ Y
of the items, he has to pay the sum of the fixed costs of the elements of S, plus the leader’s
prices of the bought elements. The leader’s revenue is the sum of the prices of the priceable
items in S. This can also be captured by defining a solution space X containing 0/1-vectors
corresponding to the feasible subsets S of Y . The goal of the follower is then to minimize a
given additive function f : X → R that depends on both fixed and leader-chosen prices.

So-called Stackelberg Network Pricing Games became popular when Labbé et al. [8] used
them to model road toll setting problems. In this game, the leader chooses prices for a subset
of priceable edges in a network graph while the remaining edges have fixed costs. Each follower
has a pair of vertices (s, t) and wants to buy a minimum cost path from s to t, taking into
account both the fixed costs and the prices chosen by the leader. The work of Labbé et al. led
to a series of studies of the Stackelberg Shortest Path Game. Roche et al. [9] showed that
the problem is NP-hard, even if there is only one follower, and it has later been shown to be
APX-hard [2, 7]. More recently, other combinatorial optimization problems were studied in
their Stackelberg pricing version. For example, Cardinal et al. [4, 5] studied the Stackelberg
Minimum Spanning Tree Game, proving APX-hardness and giving some approximation results.
Moreover, a special case of the Stackelberg Vertex Cover Game in bipartite graphs has been
shown to be polynomially solvable by Briest et al. [3].

An important contribution to the study of Stackelberg Games was the discovery by Briest
et al. [3]. They show that the optimal revenue can be approximated surprisingly well using a
single-price strategy. For a single-price strategy the leader sets the same price for all of her
priceable items. Basically, their result says the following: In any Network Pricing Game with k
priceable items, there is some λ ∈ R≥0 such that, when assigning the price of λ to all priceable
items at once, the obtained revenue is only a factor of Hk away from the optimal revenue. Here,
Hk =

∑k
i=1 1/i denotes the k-th harmonic number. This discovery has been made independently,

in a slightly different model, by Balcan et al. [1]. Actually, in both papers [1, 3] a stronger fact
is proven: The single-price strategy yields a revenue that is at least R/Hk, where R is a natural
upper bound on the optimal revenue. The definition of R was sketched in the example above,
and is formally laid out later.

Our results. Our work focuses on pushing the knowledge on Stackelberg Pricing Games
beyond the well-studied combinatorial setting, in order to capture more complex problems of
the leader. This is motivated by the simple fact that the combinatorial setting is too limited to
even model, e.g., a leader that has a minimum cost flow problem—a crucial problem in both,
combinatorial optimization and algorithmic game theory. More generally, we might want to be
able to give bounds and algorithms in the case when the follower has an arbitrary linear or even
convex program. For example, the follower might have a production problem in which he needs

16

to buy certain materials from the leader, but such pricing problems haven’t been discussed in
the literature so far.

We prove an approximation result that applies even to a setting generalizing linear and
convex programs. In our model, the follower minimizes a continuous function f over a compact
set of feasible solutions x ∈ X ⊆ Rn

≥0. For some of the variables, say x1 up to xk, the leader

can choose a price vector p ∈ Rk. Now the follower chooses a vector x ∈ X that minimizes his
objective function f(x) +

∑k
i=1 pixi. We remark that if X is a set containing 0/1-vectors only,

then we are back to the classical combinatorial. The result of Briest et al. can be transferred
to the case when f is non-additive, in view of their original proof. Moreover if X is a polytope
and f is additive, the follower minimizes a linear program, which is an important special case.

In the first part of the paper, we formally introduce this more general model and prove the
following results.

(i) The maximum revenue obtainable by the leader can be approximated to a logarithmic
factor using a single-price strategy. This generalizes the above mentioned result of Briest
et al. [3] not only to linear programs but to any kind of follower that is captured by our
model.

(ii) The analysis of point (i) is tight. There is a family of instances for which the single-price
strategy yields maximum revenue. And this revenue meets the bound of point (i).

(iii) It is strongly NP-hard to decide whether one can achieve a revenue that is only slightly
larger than the one guaranteed by the single-price strategy. This holds true even in a very
restricted combinatorial setting.

The second part of the paper deals with the parameterized complexity of Stackelberg Pricing
Games.To the best of our knowledge, the only result in this direction is an XP-algorithm by
Cardinal et al. [5] for the Stackelberg Minimum Spanning Tree Game in graphs of bounded
treewidth.

In contrast to structural parameters like the treewidth of the input graph, we consider the
complexity of the pricing problem when parameterized by the number of priceable variables (or
items in the combinatorial setting). Our main result in this part is a W[1]-hardness proof for
the case that the optimization problem of the follower is a linear program, which is arguably
one of the most interesting cases that does not fit into the combinatorial setting. This rules out
algorithms of running time f(k)|I|c unless FPT = W[1] for any function f and polynomial |I|c
of the input size; it also rules out running time |I|o(k) under the Exponential-Time Hypothesis
of Impagliazzo et al. [6]. This intractability result is complemented by a fairly simple FPT-
algorithm with running time O(2k|I|c) for any Stackelberg Game that fits into the combinatorial
model, when provided with an efficient algorithm for finding optimal follower solutions. The
algorithm enumerates all subsets of priceable items and applies a separation argument of Briest
et al. [3] to compute optimal leader prices and revenue.

References

[1] Maria-Florina Balcan, Avrim Blum, and Yishay Mansour, Item Pricing for Revenue
Maximization, Proceedings 9th ACM Conference on Electronic Commerce (EC-2008),
Chicago, IL, USA, June 8-12, 2008, 2008, pp. 50–59.

17

[2] Patrick Briest, Parinya Chalermsook, Sanjeev Khanna, Bundit Laekhanukit, and Danupon
Nanongkai, Improved Hardness of Approximation for Stackelberg Shortest-Path Pricing,
Internet and Network Economics, Springer, 2010, pp. 444–454.

[3] Patrick Briest, Martin Hoefer, and Piotr Krysta, Stackelberg Network Pricing Games,
Algorithmica 62 (2012), no. 3-4, 733–753.

[4] J. Cardinal, E.D. Demaine, S. Fiorini, G. Joret, S. Langerman, I. Newman, and O. Weimann,
The Stackelberg Minimum Spanning Tree Game, Algorithmica 59 (2011), 129–144.

[5] Jean Cardinal, Erik D Demaine, Samuel Fiorini, Gwenaël Joret, Ilan Newman, and
Oren Weimann, The Stackelberg Minimum Spanning Tree Game on Planar and Bounded-
Treewidth Graphs, Journal of combinatorial optimization 25 (2013), no. 1, 19–46.

[6] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane, Which problems have strongly
exponential complexity?, J. Comput. Syst. Sci. 63 (2001), no. 4, 512–530.

[7] Gwenaël Joret, Stackelberg Network Pricing is Hard to Approximate, Networks 57 (2011),
no. 2, 117–120.

[8] M. Labbé, P. Marcotte, and G. Savard, A Bilevel Model of Taxation and Its Application
to Optimal Highway Pricing, Management Science 44 (1998), 1608–1622.

[9] S. Roche, G. Savard, and P. Marcotte, An approximation algorithm for Stackelberg network
pricing, Networks 46 (2005), 57–67.

[10] H. von Stackelberg, Marktform und Gleichgewicht, Springer, 1934.

18

Independent Domination in Bipartite Cubic
Graphs

Christoph Brause1,2 and Michael A. Henning2

1TU Bergakademie Freiberg
2University of Johannesburg

A set S of vertices in a graph G is an independent dominating set of G if S is
an independent set and every vertex not in S is adjacent to a vertex in S. The
independent domination number of G, denoted by i(G), is the minimum cardinality
of an independent dominating set. In this talk, we study the following conjecture
posed by Goddard and Henning [Discrete Math. 313 (2013), 839–854]: If G 6=
K3,3 is a connected, cubic, bipartite graph on n vertices, then i(G) ≤ 4

11n. As a
consequence of a more general result due to Dorbec et al. [J. Graph Theory 80(4)
(2015), 329–349], it is known that if G is a bipartite, connected, cubic, graph of
order n that does not have an induced subgraph isomorphic to a supergraph of K2,3,
then i(G) ≤ 3

8n. In this talk, we improve this 3
8 -upper bound to a 4

11 -upper bound,
thereby proving the Goddard-Henning conjecture when the graph does not have an
induced subgraph isomorphic to a supergraph of K2,3. This strengthens a result in
[Discrete Applied Math. 162 (2014), 399–403] which proves the Goddard-Henning
conjecture when the girth is at least 6.

1 Introduction

A dominating set of a graph G with vertex set V (G) is a set S of vertices of G such that
every vertex in V (G) \ S is adjacent to a vertex in S; that is, every vertex outside S has a
neighbor in S. The domination number of G, denoted by γ(G), is the minimum cardinality
of a dominating set. A set is independent in G if no two vertices in the set are adjacent.
An independent dominating set, abbreviated ID-set, in G is a set that is both dominating
and independent. Equivalently, an independent dominating set is a maximal independent set.
The independent domination number of G, denoted by i(G), is the minimum cardinality of an
ID-set, and an ID-set of cardinality i(G) in G is called an i(G)-set. Independent dominating
sets have been studied extensively in the literature. (see, for example the so-called domination
books [3, 4]). A recent survey on independent domination in graphs can be found in [2].

For notation and graph theory terminology we generally follow [3]. The order of G is denoted
by n(G) = |V (G)|, and the size of G by m(G) = |E(G)|. We denote the degree of a vertex v in
the graph G by dG(v). If every vertex in G has degree r, then G is called an r-regular graph.
A 3-regular graph is commonly referred to as a cubic graph in the literature. The maximum
(minimum) degree among the vertices of G is denoted by ∆(G) (δ(G), respectively).

19

The girth of G, denoted g(G), is the length of a shortest cycle in G. A component of
a graph G isomorphic to a graph F we call an F -component of G. For a set S ⊆ V , the
subgraph induced by S is denoted by G[S]. Further, the subgraph of G obtained from G by
deleting all vertices in S and all edges incident with vertices in S is denoted by G−S; that is,
G − S = G[V (G) \ S]. A graph G is said to be subcubic if its maximum degree is at most 3.
Let nj(G) denote the number of vertices of degree j in G. A vertex of degree 0 is called an
isolated vertex.

For a simpler notation, let [k] denote the set {1, 2, . . . , k} for some positive integer k.

1.1 Special Graphs

A cycle on n vertices is denoted by Cn and a path on n vertices by Pn. The complete bipartite
graph with one partite set of size n and the other of size m is denoted by Kn,m. We denote the
graph obtained from K2,3 by adding a pendant edge to a vertex of degree 2 in K2,3 by K+

2,3.
The 5-prism, C5�K2, is the Cartesian product of a 5-cycle with a copy of K2. The graphs
K+

2,3 and C5�K2 are shown in Figure 1(a) and 1(b), respectively.

(a) K+
2,3 (b) C5 �K2

Figure 1: The graphs K+
2,3 and C5�K2.

Let B4, B6 and B12 be the three graphs shown in Figure 2. We call these three graphs,
and the graph K3,3, “bad graphs.” Further, we define a bad component of a graph G to be a
component of G isomorphic to K3,3, B4, B6 or B12. For notational simplicity, we denote the
vertices of a bad graph different from K3,3 as in Figure 2.

q1

q2

q3

q4

q1

q2

q3 q4

q5

q6
q1 q2 q3 q4 q5 q6

q7
q8 q9 q10 q11

q12

(a) B4 (b) B6 (c) B12

Figure 2: The “bad graphs” B4, B6 and B12

Given a graph G, let b1(G) be the number of components of G isomorphic to B6 or B12,
let b2(G) be the number of components of G isomorphic to B4, and let b3(G) be the number
of components of G isomorphic to K3,3. Further, we let b(G) denote the number of bad
components of G, and so b(G) = b1(G) + b2(G) + b3(G).

20

2 Main Result

In this talk, we shall present an upper bound on the independent domination number of a
subcubic, bipartite graph that does not have an induced subgraph isomorphic to K+

2,3. We
shall prove the following result.

Theorem 1. If G is a subcubic, bipartite graph that does not have an induced subgraph iso-
morphic to K+

2,3, then

11i(G) ≤ 11n0(G) + 7n1(G) + 5n2(G) + 4n3(G) + b1(G) + 2b2(G) + 9b3(G).

As an immediate consequence of Theorem 1, we have our main result.

Theorem 2. If G 6= K3,3 is a connected, cubic, bipartite graph of order n that does not have
an induced subgraph isomorphic to K+

2,3, then i(G) ≤ 4
11n.

2.1 Motivation and Known Results

As remarked in several papers [1, 5], the question of best possible bounds on the independent
domination number of connected, cubic graphs remains unresolved. If we restrict our attention
to bipartite, cubic graphs, we have the following result which was first observed in [2] (see
also [5]).

Theorem 3. ([2]) If G is a connected, cubic, bipartite graph of order n, then i(G) ≤ 1
2n with

equality if and only if G = K3,3.

If we relax the bipartite condition, then Lam, Shiu, and Sun [6] established the following
upper bound on the independent domination number of a connected cubic graph. We remark
that equality in Theorem 4 holds for the 5-prism, C5�K2.

Theorem 4. ([6]) If G 6= K3,3 is a connected, cubic graph on n vertices, then i(G) ≤ 2
5n.

Dorbec et al. [1] proved the following result.

Theorem 5. ([1]) If G 6= C5�K2 is a connected, subcubic graph of order n that does not have
a subgraph isomorphic to K2,3, then 8i(G) ≤ 8n0(G) + 5n1(G) + 4n2(G) + 3n3(G).

Our improvement of Theorem 5 consists of forbidding induced subgraphs isomorphic to K+
2,3

instead of (not necessarily induced) subgraphs isomorphic to K2,3.

Theorem 6. If G /∈ {C5�K2,K3,3} is a connected, subcubic graph of order n that does not
have an induced subgraph isomorphic to K+

2,3, then 8i(G) ≤ 8n0(G)+5n1(G)+4n2(G)+3n3(G).

As a special case of Theorem 6, every connected, cubic graph G /∈ {C5�K2,K3,3} of order
n that does not have an induced subgraph isomorphic to K+

2,3 satisfies i(G) ≤ 3
8n. In this

talk, our main result, namely Theorem 2, improves this 3
8 -upper bound to a 4

11 -upper bound
for bipartite graphs. As motivation for our work the following conjecture on the independent
domination number of a cubic graph is posed in [2].

Conjecture 7. (Goddard-Henning [2]) If G 6= K3,3 is a connected, cubic, bipartite graph of
order n, then i(G) ≤ 4

11n.

21

Figure 3: The bipartite cubic graph G22 with i(G22) = 4
11n.

Justin Southey [7] has confirmed by computer search that Conjecture 7 is true when n ≤ 26.
The upper bound in Conjecture 7 is achieved, for example, by the bipartite, cubic graph G22

of order n = 22 with i(G22) = 8 shown in Figure 3.
The Goddard-Henning Conjecture was shown in [5] to be true if the girth is at least 6.

Theorem 8. ([5]) If G is a cubic, bipartite graph of order n and of girth at least 6, then
i(G) ≤ 4

11n.

Theorem 1 strengthens the result of Theorem 8, and proves the Goddard-Henning Conjecture
when the graph does not have an induced subgraph isomorphic to K+

2,3.

References

[1] P. Dorbec, M. A. Henning, M. Montassier, and J. Southey, Independent domination in
cubic graphs. J. Graph Theory 80(4) (2015), 329–349.

[2] W. Goddard and M. A. Henning, Independent domination in graphs: A survey and recent
results. Discrete Math. 313 (2013), 839–854.

[3] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs,
Marcel Dekker, Inc. New York, 1998.

[4] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Domination in Graphs: Advanced
Topics, Marcel Dekker, Inc. New York, 1998.

[5] M. A. Henning, C. Löwenstein, and D. Rautenbach, Independent domination in subcubic
bipartite graphs of girth at least six. Discrete Applied Math. 162 (2014), 399–403.

[6] P. C. B. Lam, W. C. Shiu, and L. Sun, On independent domination number of regular
graphs. Discrete Math. 202 (1999), 135–144.

[7] J. Southey, Domination results: Vertex partitions and edge weight functions. Ph.D Thesis,
University of Johannesburg, May 2012.

22

A metaheuristic for the Minimum Gap
Graph Partitioning Problem

Maurizio Bruglieri1, Roberto Cordone2, and Vincenzo Caurio2

1Politecnico di Milano
2Università degli Studi di Milano

We address the min-sum version of the Minimum Gap Graph Partitioning Prob-
lem through a Tabu Search metaheuristic. We also develop a Mixed Integer Linear
Programming formulation to evaluate the quality of the solutions found by the
Tabu Search on a set of benchmark instances properly built.

1 Introduction

The Minimum Gap Graph Partitioning Problem (MGGPP) is a graph partitioning problem [1,
2] introduced by [4]. Let G = (V,E) be an undirected connected graph, wv an integer weight
coefficient defined on each vertex v ∈ V , and p ≤ |V | a positive integer number. Given a
vertex subset U ⊆ V , we denote by mU = minu∈U wu and MU = maxu∈U wu the minimum
and maximum weight in U , respectively, and by gap their difference γU = MU − mU . The
MGGPP consists in partitioning G into p vertex-disjoint connected subgraphs Gs = (Vs, Es),
for s = 1, . . . , p, with at least two vertices each. Its min-sum version consists in minimizing the
sum of the gaps fMS =

∑p
s=1 γVs over all subgraphs. The MGGPP can find applications, for

example, in agriculture (divide a land into parcels with bounded height difference [3]) and in
social network analysis (identify connected clusters of members with homogeneous features).

In [4], the computational complexity and the approximability of different versions of the
MGGPP is investigated, also considering some special cases. In this work, we focus on the
min-sum version of the MGGPP and, due to its NP-hardness, we propose a Tabu Search (TS)
metaheuristic. Moreover, we develop a Mixed Integer Linear Programming (MILP) formulation
to evaluate the quality of the solutions produced by the TS on a set of benchmark instances.

2 A Mixed Integer Linear Programming formulation

In this section we introduce a MILP formulation of the MGGPP where the solutions are
represented as a spanning tree on an auxiliary directed graph G̃ = (V ∪ {r}, A), being r a super-
root node and A = {(i, j) : [i, j] ∈ E or [j, i] ∈ E} ∪ {(i, r) : i ∈ V }. Each connected subgraph
of the solution (i.e., each component of the partition of G) is identified by a subtree appended
to r, where the predecessor of r is the minimum weight node in each subtree. Therefore,
the MILP consists in a multi-commodity flow formulation based on flow binary variables yijk
∀(i, j) ∈ A and k ∈ V equal to 1 if the flow of commodity k passes along arc (i, j), 0 otherwise;

23

binary variables xij equal to 1 if arc (i, j) belongs to the spanning tree, 0 otherwise; continuous
variables γi, ∀i ∈ V modeling the gap of the subgraph linked to r through node i, 0 otherwise.

min
∑

i∈V
γi (1)

∑

(i,j)∈δ+(i)

yijk =
∑

(i,j)∈δ−(i)

yjik ∀i ∈ V, k ∈ V : i 6= k (2)

∑

(i,j)∈δ+(i)

yijk = 1 ∀i ∈ V, k ∈ V : i = k (3)

∑

i∈V
yirk = 1 ∀k ∈ V (4)

∑

(i,j)∈δ+(i)

xij = 1 ∀i ∈ V (5)

xij + xji ≤ 1 ∀(i, j) ∈ A (6)

yijk ≤ xij ∀i ∈ V, (i, j) ∈ δ+(i), k ∈ V (7)

yirk = 0 ∀i ∈ V, k ∈ V : wk < wi (8)

wkyirk − wixir ≤ γi ∀i ∈ V, k ∈ V (9)
∑

(j,i)∈δ−(i)

xji ≥ xir ∀i ∈ V (10)

∑

i∈V
xir = p (11)

where δ+(i) and δ−(i) denote the forward and the backward star of vertex i, respectively.
The objective function (1), to be minimized, is given by the sum of the gaps of each subgraph

in the solution. Constraints (2) guarantee the flow conservation for each commodity k in each
node i 6= k; (3) ensure that for each commodity k the total flow of this commodity going out
from node k is 1; (4) impose that for each commodity k the super-root r can be reached from
one and only one node i ∈ V . Constraints (5) guarantee that for each node i ∈ V one and
only one arc of its forward star is selected. Constraints (6) prevent the two-cycles. Coherency
constraints (7) impose that if arc (i, j) is not in the solution then for no commodity k there
can be a flow on this arc. Constraints (8) guarantee for each commodity k that the final node,
the super-root r is reached through, has weight lower than wk and thus is the minimum weight
node of the subgraph. Constraints (9) enforce variables γi to model the gap of the subgraph
linked to r through node i and (10) ensure that no subgraph in the solution is a singleton.
Finally, constraint (11) guarantees that the solution is made up of p subgraphs.

3 A Tabu Search solution approach

The solution approach is based on two phases: in the first an initial solution is built through
a construction procedure, while in a second it is improved by Tabu Search [6]. We apply this
approach several times considering different initializations in the first phase. The construction
procedure is inspired by Prim’s algorithm for the minimum spanning tree problem [5] and it
returns a spanning forest of p trees identifying a feasible solution for the MGGPP :

1. we order the edges [i, j] ∈ E by non decreasing value of the gaps |wi − wj |;

24

2. we build an initial greedy matching X of cardinality p, selecting the edges in the given
order and forbidding those adjacent to the already selected ones;

3. we repeat the following steps until all vertices are covered by X:

• for each edge of the cut generated by the vertices covered by X we compute the
total gap obtained if it were added to X;

• we select the edge that minimizes the total gap and we add it to X.

Tabu Search is a well known metaheuristic approach introduced in [6] to enhance the per-
formance of local search. Our implementation for the MGGPP exploits a very simple neigh-
borhood, based on moving a single vertex from a subgraph of the current solution to another
one. This neighborhood consists of at most n(p − 1) solutions. The feasibility requires three
conditions: 1) the moved vertex must not be an articulation vertex for the original subgraph,
i.e. its removal should not disconnect the subgraph; 2) the destination subgraph must be ad-
jacent to the vertex; 3) the original subgraph must include at least three vertices. The feasible
moves can be identified in O(m) time for the whole neighborhood in the worst-case, due to the
identification of the articulation vertices and of the subgraphs adjacent to each vertex. We test
this kind of neighborhood since it is a natural building-block for more sophisticated moves.

The attribute used to characterize the tabu moves is the inclusion of a vertex v in a subgraph s
for s = 1, . . . , p. A suitable matrix L stores the most recent iteration lvs in which vertex v has
left subgraph s. A move that transfers vertex v into subgraph s is tabu until iteration lvs+ lin,
where lin is a parametric value known as tabu tenure. At the beginning, all elements of matrix L
are set to a very large negative value (lvs = −∞), so that all moves are nontabu. In order to
intensify or diversify the search, the tenure parameter changes in an adaptive way based on
the value assumed by the objective in the previous iteration: lin decreases by 1 if the objective
has improved, increases by 1 otherwise, remaining inside a prescribed range {lmin, ..., lmax}.
The rationale is to intensify the search in more promising regions of the solution space and to
diversify it in less promising ones. This algorithm is applied several times, replacing the initial
greedy matching built at step 2 of the construction procedure with random ones.

4 Some numerical results

We built instances with four different sizes (n = 10, 20, 50, 100 vertices) and three different
structures with respect to the density and topology: random graphs with m = n(n− 1)/6 and
m = n(n − 1)/3 edges, and planar graphs obtained with a greedy triangulation of n points
uniformly distributed at random in a square. The vertex weights are integer numbers uniformly
distributed in {1, . . . , 100}. The number of subgraphs p is set equal to ln(n),

√
n or n/ ln(n)

rounded to the closest integer, in order to obtain solutions with few large subgraphs, balanced
subgraphs, and with many small subgraphs, respectively. For each combination we consider 5
samples. In this way, we obtain 180 instances of the MGGPP.

Table 1 reports our results on the smaller instances (n = 10 and n = 20), most of which
can be solved to optimality with a MILP solver. The first two columns report the number of
nodes and the graph topology. The following four columns provide the average percent gap of
the results, obtained on 15 instances (3 values of p and 5 samples), by the greedy algorithm
(Greedy), the local search (LS), the tabu search algorithm without any restart (TS) and the
tabu search algorithm restarted every 125 iterations (TSr), respect to the optimal MILP value
computed with GUROBI 6.5.2. Both tabu search algorithms have lmin = 5 and lmax = 10

25

and are run for one minute on an Intel Core i3-3110M CPU with 2.40GHz and 4 GB. The
greedy and the local search algorithm take at most 1 and 3 msec for the largest instances.
The tabu search with restart finds all optimal solutions on the instances with n = 10 and
on the denser ones with n = 20, while it strongly reduces the gap on the sparser instances.
The restart seems to be a fundamental component to achieve this performance. The planar
instances prove harder than the other ones, and this behavior is more evident as the instance
size increases.

n Topology Greedy LS TS TSr
d = 0.3 26.75% 14.73% 5.81% 0.00%

10 d = 0.6 22.01% 22.01% 14.97% 0.00%
planar 26.05% 13.14% 4.84% 0.00%
d = 0.3 35.68% 13.21% 11.64% 2.13%

20 d = 0.6 13.31% 7.62% 6.34% 0.00%
planar 42.74% 20.86% 18.73% 1.60%

Table 1: Results on the smaller instances

Table 2 reports our results on the larger instances (n = 50 and n = 100). Since for most of
them GUROBI is unable to find either the optimum or a lower bound, we compare the results
of the three algorithms listed above only with the starting greedy solution, reporting their
percent improvement respect to the greedy solution value in the columns LS, TS and TSr.
These results confirm that TSr outperforms the other algorithms. On the planar instances,
the improvement is higher, probably due to a worse quality of the starting greedy solution.

n Topology LS TS TSr
d = 0.3 6.99% 7.60% 9.20%

50 d = 0.6 1.56% 2.69% 5.94%
planar 15.03% 20.10% 27.62%
d = 0.3 6.76% 8.20% 9.58%

100 d = 0.6 2.72% 3.30% 3.75%
planar 18.95% 25.52% 43.59%

Table 2: Improvements with respect to the greedy algorithm on the larger instances

References

[1] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, eds. Graph Partitioning and
Graph Clustering, v. 588 of Contemporary Mathematics. AMS, 2013.

[2] C.-E. Bichot and P. Siarry, editors. Graph Partitioning. Wiley-ISTE, 2013.

[3] Li Xiao, Li Hongpeng, Niu Dongling, Wang Yan, and Liu Gang. Optimization of GNSS-
controlled land leveling system and related experiments. Transactions of the Chinese
Society of Agricultural Engineering, 31(3):48–55, 2015.

[4] M. Bruglieri, R. Cordone Partitioning a graph into minimum gap components. Electronic
Notes in Discrete Mathematics, vol. 55: 33–36, 2016.

[5] R. C. Prim Shortest Connection Networks and some Generalizations. Bell System Tech-
nical Journal, vol. 36: 1389–1401, 1957.

[6] F. Glover Future Paths for Integer Programming and Links to Artificial Intelligence.
Computers & Operations Research, vol. 13: 533–549, 1986.

26

Complexity of K-Adaptable
Stochastic Programming∗

Christoph Buchheim1 and Jonas Pruente1

1Fakultät für Mathematik, TU Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany

We address optimization problems with uncertain objective functions, given by
discrete probability distributions. Within this setting, we investigate the so-called
K-adaptability approach: the aim is to calculate a set of k feasible solutions such
that the objective value of the best of these solutions, calculated in each scenario
independently, is optimal in expectation. We show that this problem is NP-hard
even if the underlying certain problem is trivial, and present further complexity
results concerning approximability and fixed-parameter tractability.

1 Introduction

Consider an optimization problem of the form

min ξ>x
s.t. x ∈ X (P)

where X ⊆ Qn describes the set of feasible solutions. In practice, the objective function
coefficients ξ in Problem (P) are often unknown or uncertain. As an example, consider the
shortest path problem in a road network. In this case, the time needed to traverse an edge
depends on the traffic situation, which is not know exactly in advance.

In the standard stochastic programming approach, one would thus replace the objective
function ξ>x of Problem (P) by its expected value E(ξ>x), considering ξ a random variable.
By the linearity of the expected value, this is equivalent to replacing every entry of ξ by its
expected value, the problem is thus reduced to a certain problem, so that this approach is
of limited theoretical interest. As a consequence, in stochastic programming, one is usually
interested in uncertain constraints rather than uncertain objective.

In this paper, we investigate a new approach, motivated by the so-called K-adaptable robust
optimization paradigm [1, 2]: we search for a set of k feasible solutions such that the expected
objective value of the best of these solutions is optimal, where the best solution is selected
independently in each scenario. The idea is thus to determine k feasible solutions x1, ..., xk ∈ X
before the scenario materializes, and then choose the best of them afterwards. Formally, this
leads to a problem of the form

min E
(

min{ξ>x1, . . . , ξ>xk}
)

s.t. x1, . . . , xk ∈ X .

∗This work has been supported by the German Research Foundation within the Research Training Group 1855.

27

In the following, we assume that the random variable ξ is discrete, i.e., we define a finite
set of scenarios S1, . . . , Sl with probabilities p1, . . . , pl ≥ 0 satisfying p1 + · · · + pl = 1, and
corresponding objective vectors ξ1, . . . , ξl ∈ Qn. The problem then becomes

min
∑l

j=1 pj min{ξ>j x1, . . . , ξ>j xk}
s.t. x1, . . . , xk ∈ X .

(mEm)

For a practical application, consider a supplier who serves the same companies every day.
The time for using different routes depends on the current traffic situation. So he has to solve a
vehicle routing problem every day, which due to its complexity is not possible quickly enough.
Knowing the possible scenarios and how they effect his arrival time, and their probabilities, he
could use the Min-E-Min idea to simplify his decision: for this, he has to solve Problem (mEm)
only once, and every morning he just has to choose the best route for the day out of a small
set of potential solutions. From a human user’s point of view, it might be desirable to keep
the number k small, even when a larger k could improve the objective value.

2 Preliminaries

Our main objective is to investigate the complexity of Problem (mEm), where the input consists
of the probabilities p1, . . . , pl and the corresponding objective vectors ξ1, . . . , ξl ∈ Qn. By
integrating the probability pi into the vector ξi, we may assume that pi = 1 for i = 1 . . . , l in
the following. We will consider both the situation where the number k of solutions is fixed and
where it is part of the input.

For the set X of feasible solutions, we do not make any specific assumptions. The idea is
that it is specified by means of an oracle for solving the certain problem (P), for any objective
vector ξ. When proving hardness results, we will show that they hold even for very particular
sets X, in these cases we always choose X ⊆ {0, 1}n. We address the following decision variant
of Problem (mEm):

Definition 1. The Discrete Min-E-Min Decision Problem is defined as follows: Given X ⊆ Qn

and objective vectors ξ1, ..., ξl ∈ Qn as well as k, l ∈ N and b ∈ Q, decide whether there
exist x1, . . . , xk ∈ X such that

∑l
j=1 min{ξ>j x1, . . . , ξ>j xk} ≤ b.

In this problem, each scenario ξj is “covered” by one of the solutions x1, . . . , xk ∈ X,
namely the one where min{ξ>j x1, . . . , ξ>j xk} is attained. This leads to a partition of the set of

scenarios into at most k parts. Conversely, if such a partition {1, . . . , l} = ∪ki=1Ii is given, one
can construct a solution x1, . . . , xk by computing

xi ∈ argminx∈X
(∑

j∈Ii ξj
)>
x

using the oracle for the certain problem (P). This shows that Problem (mEm) can be solved
by calling the oracle for each possible k-partition of {1, . . . , l}. Moreover, it is easy to verify
that it suffices to consider partitions without empty subsets. In particular, we obtain

Theorem 2. The Discrete Min-E-Min Decision Problem can be polynomially reduced to the
certain problem (P) if either the number of scenarios l or the difference l − k is bounded.

28

Proof. The number of partitions of {1, . . . , l} into k non-empty subsets is the Sterling number
of the second kind,

Sl,k =
1

k!

k∑

j=0

(−1)k−j
(
k

j

)
jl .

The problem is trivial if k ≥ l, so when l is bounded, we may assume that k is bounded as
well, and hence also Sl,k. For the second assertion, note that Sl,k ∈ O(l2(l−k)).

For the general case, we have

Theorem 3. The Discrete Min-E-Min Decision Problem belongs to NP, if the underlying
problem (P) belongs to NP.

3 Hardness Results

We first consider the case where k is part of the input. We use the following NP-complete
problem for our first hardness proof:

Definition 4. Let G(V,E) be a graph with node weights w ∈ NV0 and edge lengths l ∈ NE0
and b, p ∈ N0 integers with p ≤ |V |. The p-Median Decision Problem asks whether there is a
set P ⊆ V of cardinality at most p such that

∑
v∈V w(v) · dP (v) ≤ b. Here, dP (v) denotes the

length of a shortest path from v to any point in P with respect to l.

The NP-hardness of the p-Median problem (sometimes called Min-Sum Multicenter Problem)
was proven by Kariv and Hakimi [4], using a reduction from Dominating Set. This reduction
is a parameterized reduction showing that p-Median is actually W [2]-hard for the parameter p,
and hence most likely not fixed-parameter tractable. The same then follows for the Discrete
Min-E-Min Problem:

Theorem 5. If k is part of the input, the Discrete Min-E-Min Decision Problem is NP-hard
and W [2]-hard for parameter k. This remains true even if |X| is polynomial.

Proof. We construct a parametrized reduction from p-Median. The set X consists of all unit
vectors in QV . For every v ∈ V , we define a scenario ξv ∈ QV by (ξv)u := w(v) · d(u, v).
Finally, we set k = p. Now for any P = {u1, . . . , uk} ⊆ V and v ∈ V we have

w(v) · dP (v) = w(v) ·min{d(u1, v), . . . , d(uk, v)} = min{(ξv)>eu1 , . . . , (ξv)>euk} ,

from which the result follows.

As shown by this proof, the hardness of the problem is not due to the structure of X, but
due to the exponential number of possible partitions when k is not fixed. For fixed k and
polynomial |X|, the problem can be solved in polynomial time by enumeration. However,
if |X| is not polynomial, the problem turns out to be hard again.

Theorem 6. The Discrete Min-E-Min Decision Problem is NP-hard for each fixed k ≥ 3, even
if X = {0, 1}n and ξj ∈ {−1, 0, 1}n for every j ∈ {1, ..., l}.

29

Proof. We use a reduction from k-Vertex Coloring, which is NP-complete for any k ≥ 3 [3].
Given a graph G(V,E), we define a scenario ξv ∈ QV for each node v ∈ V by (ξv)u = −1
if u = v, (ξv)u = 1 if {u, v} ∈ E, and (ξv)u = 0 otherwise. Now for given x1, . . . , xk ∈ {0, 1}V we
have

∑
v∈V min{ξ>v x1, . . . , ξ>v xk} ≤ b := −|V | if and only if the sets Vi := {v ∈ V | (xi)v = 1}

for i ∈ {1, . . . , k} are independent sets covering V . This implies the result.

Theorem 7. The Discrete Min-E-Min Decision Problem with k = 2 fixed is NP-hard, even
if X = {0, 1}n.

Proof. We reduce the Max Cut Problem by defining the scenarios ξv as in the last proof, except
that (ξv)v is now defined as −degG(v). Then

∑
v∈V min{ξ>v x1, ξ>v x2} ≤ −2|E|+ 2b if and only

if the sets V1 and V2, defined as in the last proof, form a partition of V inducing a cut of
cardinality at least |E| − b.

As the certain problem (P) is tractable for X = {0, 1}n, the two latter results show that no
oracle-polynomial time algorithm based on the underlying certain problem can exists for the
Discrete Min-E-Min Problem, even if k ≥ 2 is fixed, unless P = NP .

We finally note that the Min-E-Min Problem cannot even be approximated up to a constant
factor unless P = NP , starting again with the case of unbounded k.

Theorem 8. If k is part of the input, the Min-E-Min Problem is not in APX unless P = NP ,
even if X has polynomial size.

Proof. Assume that there exists an α-approximation algorithm for the Min-E-Min Problem, for
some α > 1. Then we claim that Vertex Cover can be solved in polynomial time. Given G(V,E)
and k ∈ N, we let X be the set of unit vectors in QV and define a scenario ξe for each e ∈ E
by (ξe)v = 1

α if v ∈ e and |E|+ 1− 1
α(|E| − 1) otherwise. Now if U ⊆ V is a vertex cover of G,

we have
∑

e∈E minu∈U (ξe)u ≤ 1
α |E|, while otherwise

∑
e∈E minu∈U (ξe)u ≥ |E| + 1, for large

enough α. This shows the results.

Adapting the proof of Theorem 6, one can show that k-Vertex Coloring can be decided by
using any constant-factor approximation algorithm for the Min-E-Min Problem for the same k.
This leads to

Theorem 9. The Min-E-Min Problem with fixed k ≥ 3 is not in APX unless P = NP , even
for X = {0, 1}n.

References

[1] D. Bertsimas and C. Caramanis. Finite adaptability in multistage linear optimization.
IEEE Transactions on Automatic Control, 55(12):2751–2766, 2010.

[2] C. Buchheim and J. Kurtz. Min-max-min robust combinatorial optimization. Mathematical
Programming (Series A). To appear. DOI: 10.1007/s10107-016-1053-z.

[3] M.R. Garey, D.S. Johnson, and L.J. Stockemeyer. Some simplified NP-complete graph
problems. Theoretical Computer Science, 1:237–267, 1976.

[4] O. Kariv and S.L. Hakimi. An algorithmic approach to network location problems 2: The
p-medians. SIAM Journal on Applied Mathematics, 37(3):539–560, 1979.

30

Research on the Price of Connectivity for
the vertex cover problem and the

dominating set problem, with the help of
the system GraphsInGraphs

Eglantine Camby1,2 and Gilles Caporossi2

1Université Libre de Bruxelles (Belgium), ecamby@ulb.ac.be
2GERAD & HEC Montréal (Canada), gilles.caporossi@hec.ca

The vertex cover problem and the dominating set problem are two well-known problems
in graph theory. Both hold a connected version, which imposes that the vertex subset must
induce a connected component. To study the interdependence between the connected ver-
sion and the original version of a problem, the Price of Connectivity (PoC) was introduced
by Cardinal and Levy [7, 10] as the ratio between invariants from the connected version and
the original version of the problem.

Some classes of PoC-Near-Perfect graphs, hereditary classes of graphs in which the Price
of Connectivity is bounded by a fixed constant, have been already studied [5, 6]. To go
further, we present for the vertex cover problem conjectures on these graphs with the help
of the computer software GraphsInGraphs [4].

Moreover, Camby, Cardinal, Fiorini and Schaudt [5] introduced, for the vertex cover
problem, the notion of critical graphs, graphs that can appear in the list of forbidden induced
subgraphs characterization. By definition, the Price of Connectivity of a critical graph is
strictly greater than that of any proper induced subgraph. In this paper, we prove that for
the vertex cover problem, every critical graph is either isomorphic to a cycle on 5 vertices
or bipartite. Moreover, for the dominating set problem, we investigate critical trees and we
show that every minimum dominating set of a critical graph is independent.

1 Introduction

A vertex cover is a vertex subset X such that every edge of G has at least one endpoint in X. A con-
nected vertex cover is a vertex cover X such that the induced subgraph G[X] is connected. A dominating
set of a graph G is a vertex subset X such that every vertex either is in X or has a neighbor in X. A
connected dominating set of G is a dominating set X of G that induces a connected subgraph. In both
cases, when G is not connected, we require that G[X] has the same number of connected components
as G. Table 1 fixes all notations about these notions.

In 1972, Karp identified 21 NP-hard problems, among which finding a minimum vertex cover of a
graph. In 2008, Cardinal and Levy [7, 10] introduced the Price of Connectivity for the vertex cover
problem. Lately, Camby, Cardinal, Fiorini and Schaudt [5] studied more in depth this new graph
invariant. Besides, several researchers studied the interdependence between other graphs invariants.

31

Original version vertex cover problem dominating set problem
value of the minimum size τ(G) γ(G)

name of this value vertex cover number domination number

Connected version vertex cover problem dominating set problem
value of the minimum size τc(G) γc(G)

name of this value connected vertex cover number connected domination number

Price of Connectivity vertex cover problem dominating set problem

value τc(G)
τ(G)

γc(G)
γ(G)

Table 1: Notations for the vertex cover problem and the dominating set problem.

Zverovich [11] characterized, in terms of list of forbidden induced subgraphs, PoC-Perfect graphs,
graphs for which the connected domination number and the domination number are equal for all in-
duced subgraphs. Some years ago, Camby and Schaudt [6] translated the Price of Connectivity from
the vertex cover problem to the dominating set problem and investigated it.

Recently, Belmonte, vant Hof, Kamiński and Paulusma [1, 2, 3] studied the Price of Connectivity for
the feedback vertex set while Hartinger, Johnson, Milanič and Paulusma [8, 9] investigated the Price of
Connectivity for cycle transversals.

2 Our results

2.1 The vertex cover problem

2.1.1 Conjectures on PoC-Near-Perfect graphs and critical graphs

With the help of the computer software GraphsInGraphs [4], we establish two new conjectures on PoC-
Near-Perfect graphs and critical graphs. As a generalization of PoC-Perfect graphs, PoC-Near-Perfect
graphs are graphs such that the Price of Connectivity of all induced subgraphs is bounded by a fixed
constant, whereas, by definition, a critical graph has a Price of Connectivity strictly greater than that
of all proper induced subgraphs.

Conjecture 1. The following assertions are equivalent for every graph G:

(i) For every induced subgraph H of G it holds that τc(H) 6 5
3 τ(H).

(ii) G is (Hi)
10
i=1-free, where graphs H1, . . . , H10 are depiced in Figure 1.

Figure 1: Graphs H1, . . . , H10 from Conjecture 1.

Conjecture 2. Every critical graph is a cactus.

32

2.1.2 Critical graphs

Camby & al. [5] proved that every strongly critical graph, graph whose its price of connectivity is strictly
greater than that of all proper (not necessarily induced) subgraphs, is bipartite. Here, we extend the
result to the class of critical graphs, expect the cycle C5 on 5 vertices.

Theorem 1. A critical graph G is either isomorphic to C5, or bipartite. Moreover, when G is bipartite,
every minimum vertex cover of G is independent.

2.2 Dominating set problem

2.2.1 Critical trees

Figure 2: A special tree

Let T be a tree. We call T special if T is ob-
tained from another tree (filled circle vertices in the ex-
ample of Figure 2) by subdividing each edge either once
or twice (hollow circle vertics) and then attaching a pen-
dent vertex to every leaf of the resulting graph (square ver-
tices).

The next result gives a partial characterization of the class of crit-
ical trees. However, the class of special trees turns out to be too restricted. We need a new definition.

Figure 3: A peculiar tree.

We call a tree T peculiar if the neighbor of every leaf has degree
2, every minimum dominating set D of T is independent and every
vertex v ∈ V (T) \ D with degree at least 3 has only one neighbor
in D, i.e. |NT (v) ∩D| = 1. See Figure 3 for an example of peculiar
tree where a minimum dominating set contains vertices indicated by
filled circles and leaves are indicated by squares.

Theorem 2. For a tree G, the following assertions are equivalent:

(i) G is a peculiar critical tree.

(ii) G is strongly critical.

(iii) G is critical.

Moreover, if G is critical and if the degree of any v ∈ V (G) \ D, where D is an arbitrary minimum
dominating set of G, is at most 2, then G is a special tree built on an initial tree H, where V (H) is a
minimum dominating set.

special trees

P7

P8

peculiar trees

Figure 3

Figure 5

Figure 6

critical trees

Figure 4: The situation around critical trees.

Figure 4 illustrates the relations be-
tween graph classes: special trees, pecu-
liar trees and critical trees. Not all pe-
culiar trees are critical. For instance, the
graph depicted in Figure 3 (whose Price
of Connectivity is 12/5) is not critical be-
cause it contains as an induced subgraph
the graph, with a higher Price of Connec-
tivity, obtained from K1,3 by subdividing
each edge exactly thrice. Furthermore, the
graph illustrated by Figure 5 is a peculiar
critical tree which is not special. Also, we
point out that not all special trees are crit-
ical, for instance P8 contains an induced

33

Figure 5: A peculiar critical tree, not special.
Figure 6: A special critical tree.

P6 with the same Price of Connectivity.

Moreover, by Proposition 3, every special tree built on the initial tree H, where all edges of H are
subdivided exactly twice in G, is critical. These graphs are represented by the gray area in Figure 4.
However, the converse in the class of special trees is not true because the graph illustrated by Figure 6
is critical.

Proposition 3. Let G be a special tree built on the initial tree H. If all edges of H are subdivided twice
in G, then G is critical.

2.2.2 Critical graphs

Theorem 4. Every minimum dominating set of a critical graph is independent.

Acknowledgements

This work was partially supported by a post-doc grant “Bourse d’Excellence WBI.WORD” from Fédération
Wallonie-Bruxelles (Belgium).

References

[1] R. Belmonte, P. vant Hof, M. Kamiński, D. Paulusma, The price of connectivity for feedback vertex
set, The Seventh European Conference on Combinatorics, Graph Theory and Applications (2013), pp. 123–
128.

[2] R. Belmonte, P. vant Hof, M. Kamiński, D. Paulusma, Forbidden induced subgraphs and the price of
connectivity for feedback vertex set, International Symposium on Mathematical Foundations of Computer
Science, (2014), pp. 57–68.

[3] R. Belmonte, P. vant Hof, M. Kamiński, D. Paulusma, The price of connectivity for feedback vertex
set, Discrete Applied Mathematics 217 , (2017), pp. 132–143.

[4] E. Camby, G. Caporossi, Studying graphs and their induced subgraphs with the computer : GraphsIn-
Graphs, Cahiers du GERAD G-2016-10 (2016).

[5] E. Camby, J. Cardinal, S. Fiorini, O. Schaudt, The price of connectivity for vertex cover, Discrete
Mathematics & Theoretical Computer Science 16 (2014), pp. 207–224.

[6] E. Camby, O. Schaudt, The price of connectivity for dominating sets: upper bounds and complexity,
Discrete Applied Mathematics 177 (2014), pp. 53–59.

[7] J. Cardinal, E. Levy, Connected vertex covers in dense graphs, Approximation, Randomization and
Combinatorial Optimization. Algorithms and Techniques, (2008), pp. 35–48.

[8] T.R. Hartinger, M. Johnson, M. Milanič, D. Paulusma, The price of connectivity for cycle transversals,
International Symposium on Mathematical Foundations of Computer Science (2015), pp. 395–406.

[9] T.R. Hartinger, M. Johnson, M. Milanič, D. Paulusma, The price of connectivity for cycle transversals,
European Journal of Combinatorics 58 (2016), pp. 203–224.

[10] E. Levy, Approximation Algorithms for Covering Problems in Dense Graphs, Ph.D. thesis. Université
libre de Bruxelles, Brussels (2009).

[11] I.E. Zverovich, Perfect connected-dominant graphs, Discussiones Mathematicae Graph Theory 23 (2003),
pp. 159-162.

34

Inventory rebalancing in bike-sharing
systems

Marco Casazza1, Alberto Ceselli1, and Roberto Wolfler Calvo2

1Università degli Studi di Milano, Dipartimento di Informatica, Italy.
2Université Paris 13, Laboratoire d’Informatique Paris Nord, France.

We address an optimization problem arising in rebalancing operations of inven-
tory levels in bike-sharing systems. Such systems are public services where bikes
are available for shared use on a short term basis. To ensure the availability of bikes
in each station and avoid disservices, the bike inventory level of each station must
met a forecast value. This is achieved through the use of a fleet of vehicles moving
bikes between stations. Our problem can be classified as a Split Pickup and Split
Delivery Vehicle Routing Problem. We propose a formulation in which routes are
decomposed in smaller structures and we exploit properties on the structure of the
optimal solutions, to design an exact algorithm based on branch-and-price.

1 Introduction

A bike-sharing system is a public service where bikes are available for shared use to individuals
on a short term basis. Typically, users can pick up bikes at a cost and drop them back at
designated stations widespread around the city. Such systems have been implemented around
the world and are now present in hundreds of cities, as documented in [1].

Indeed the organization and management of the logistics of a bike-sharing system is challeng-
ing: for example, user behaviour results in an imbalance of the bike inventory in the stations
over time, leading to undesired disservices such as empty departure stations or full destina-
tions. To ensure the availability of service, one of the solutions chosen by many operators is
to rebalance the bike inventory level of the stations by means of a fleet of dedicated trucks:
the target inventory level of each station is forecast, and bikes are picked up from stations
where congestion is expected, and delivered to those expected to become empty. Due to the
high costs of running trucks in a urban environment, efficient rebalancing operations are a key
factor for the success of the whole system.

Unfortunately, such operations rise very hard optimization problems. That is the case of
the Split Pickup and Split Delivery Vehicle Routing Problem (SPSDVRP): we assume that
the network of the bike stations is given with both travel time and cost between each pair
of stations. For each station we also know both the current and the target bike inventory
levels. A fleet of homogeneous vehicles of limited capacity is given to perform rebalancing
operations in such a way that the target inventory level is met for each station of the network.
However, during the rebalancing process each station can be visited multiple times, even by
the same vehicle. The SPSDVRP requires to find a route for each vehicle, that is a pattern

35

defining which stations are visited, the order of visits, and the amount of bikes loaded or
unloaded at each station. Each vehicle always starts and ends at a depot with no bikes on
board. Furthermore, each route cannot exceed a given time limit, that is the operator shift
duration. We finally assume that no station is used as a temporary unloading location, meaning
that during rebalancing operations no bikes are loaded from a delivery station or unloaded to
a pickup station and therefore the number of bikes in each station is monotone. A feasible
solution to the SPSDVRP consists of a set of routes respecting the above conditions. A solution
is also optimal when the sum of the travelling costs of all vehicles is minimum.

From a methodological point of view, our SPSDVRP is NP-hard and belongs to the wide
class of Pickup and Delivery Vehicle Routing Problems (PDVRPs) [2] and generalises the Split
Delivery Vehicle routing Problem (SDVRP). The problem of rebalancing bikes with a single
vehicle has been addressed in [3], while a first mathematical approach for the SPSDVRP on a
bike-sharing system has been proposed in [4]: the authors model the problem as a set parti-
tioning extended formulation in which each variable represents a full vehicle route. However,
such a formulation has two main drawbacks: first, it is not designed to handle travelling times,
that are instead approximated by a limit on the number of visits in each route, and second,
solving the continuous relaxation by means of column generation techniques is time consuming
due to the complexity of the pricing procedure. We propose instead a new formulation that
overcomes these two limitations, new theoretical properties on the structure of the optimal
solutions, and a branch-and-price approach that solves to optimality instances with up to 20
nodes.

2 Model

The SPSDVRP on a bike-sharing system can be formalized as follows: a set of station nodes
N = {1 . . . n} is given, each with both the current and the target bike inventory levels stocki
and targeti, respectively. When stocki > targeti we say that i is a pickup node, when stocki <
targeti it is a delivery node, and when stocki = targeti i it is already balanced. The demand
of each node di = |stocki − targeti| is the quantity of bikes to pick up from (resp. deliver to)
that node.

Let G = (N0, A) be a directed graph in which N0 = N ∪ {0} is the set of nodes including
the depot 0, and A = {(i, j) | i, j ∈ N0} is the set of arcs. Let cij and tij be the travelling cost
and time of arc (i, j) ∈ A, respectively. W.l.o.g we assume that both costs and times satisfy
triangular inequality.

A homogeneous fleet of vehicles M = {1 . . .m} is given to satisfy station node demands.
Each vehicle has a capacity C and a time resource T .

The SPSDVRP on a bike-sharing system is the problem of redistributing bikes in the network
at minimum travelling cost, satisfying node demands while not exceeding neither vehicles
capacity nor their time resource. Pickup and delivery nodes can be visited several times,
either by the same vehicle or by different ones, and therefore their demand can be split.

3 Groups formulation and properties

The approach to the SPSDVRP proposed in [4] revealed that solving the continuous relaxation
of such formulation was very challenging due to the structure of the pricing problem. That

36

5

7

4

8

6

2

10

1

3

0

9

6

7

3

8

5

1
8

4

2

6

9

3

4

0
0

4

0

6

8

3

0
0

5

2

Vehicle 1
Vehicle 2

(a) Example of solution on a graph having 10 nodes
and 2 vehicles: each nodes is either a pickup (+) or
a delivery (−). At each node it is attached a label
reporting its demand. Each arc traelled by a vehicle
has a label indicating the current amount of bikes
on board.

5+ 7+

4+

8-6-

2-

10-

1+3-

0 9+

10-5+0 0

0

Group 1 Group 2

Group 1 Group 2 Group 3

(b) Group partitioning of the routes in solution in
Figure 1(a): for each vehicle, each sequence of pick-
ups and delivieries corresponds to a single group.
Groups are concatenated to compose a route.

Figure 1: Example of SPSDVRP solution and its group representation.

motivated us to elaborate on a different approach, identifying particular regularities and prop-
erties of combinatorial substructures of the routes, and trying to reduce the complexity of the
pricing problem by exploiting these properties.

We start from a simple observation:

Observation 1. A route always starts with a sequence composed only by pickup nodes, al-
ways ends with a sequence composed only by delivery nodes, and in general always interleaves
sequences of pickups followed by sequences of deliveries.

Our intuition is therefore that the structure of a route can be much simplified by explicitly
encoding such an interleaved behaviour. We formalize such an intuition denoting as group a
sequence of one or more pickup nodes followed by a sequence of one or more delivery nodes
and define a route as a sequence of concatenated groups. We then express a route cost and
time in function of its groups. An example of routes and groups is depicted in Figure 1(b).

We then provide proofs that:

Theorem 1. There always exists an optimal solution in which no node is visited more than
once in the same group.

Theorem 2. For each pair of pickup (resp. delivery) nodes, there always exists an optimal
solution in which they are visited at most once in the same group.

Theorem 3. Given the sets of nodes visited in each group of each vehicle, the problem of
assigning the quantity loaded (resp. unloaded) at each station can be solved in polynomial time.

4 Algorithms

We model our SPSDVRP as the problem of finding a minimum cost set of groups concate-
nations. Our formulation has an exponential number of variables, one for each group of each
vehicle, and we recur to column generation techniques to solve its continuous relaxation.

37

Our pricing problem is a variant of Resource Constrained Elementary Shortest Path Problem
(RCESPP) on a particular graph in which pickup nodes must be visited before delivery ones,
and the profit collected at each node may be fractional. However, concerning the pricing
problem we prove that:

Theorem 4. There always exists an optimal solution in which there is at most one fractional
pickup node (resp. delivery node) in the same group.

Theorem 5. The pickup (resp. delivery) node selected as fractional in each group, has a profit
that is not greater than the less profitable non-fractional node visited in the same group.

We solve our pricing problem by means of a label correcting algorithm in which each label
is extended in three different ways: one collecting full profit, one collecting fractional profit,
and one for when it is profitable to visit the node only without collecting any profit.

We included our CG procedure into a branch-and-price framework to achieve integrality of
solutions, with heuristic pricers to speed-up CG, and a rounding heuristic to obtain good upper
bounds to the value of the optimal solutions. We implemented our algorithms in C++ using
SCIP framework and tested our methodology against datasets from the literature [4]. The
results shown in Table 1 are promising: our algorithm solves to proven optimality all instances
with 10 nodes in an average computing time smaller than 1 minute.

Instance z z̄ gap(%) nodes time(s)

n10q10a 3719.00 3719 0.00 130 8.92
n10q10A 3055.00 3055 0.00 53 2.67
n10q10b 3353.00 3353 0.00 984 37.52
n10q10B 3745.00 3745 0.00 99 5.28
n10q10c 4239.00 4239 0.00 5 1.17
n10q10C 3392.00 3392 0.00 307 15.12
n10q10d 4472.00 4472 0.00 153 7.85
n10q10D 3307.00 3307 0.00 2771 72.46
n10q10e 3816.00 3816 0.00 870 54.63
n10q10E 4876.00 4876 0.00 154 5.22

Instance z z̄ gap(%) nodes time(s)

n10q10f 3037.00 3037 0.00 57 2.57
n10q10F 4097.00 4097 0.00 103 3.15
n10q10g 4179.00 4179 0.00 237 7.50
n10q10G 4221.00 4221 0.00 67 5.06
n10q10h 4194.00 4194 0.00 396 10.98
n10q10H 4118.00 4118 0.00 640 29.38
n10q10i 2523.00 2523 0.00 161 6.23
n10q10I 3287.00 3287 0.00 72 2.16
n10q10j 3343.00 3343 0.00 150 6.76
n10q10J 3161.00 3161 0.00 169 3.78

Table 1: Results for instances with 10 nodes.

References

[1] P. DeMaio, Bike-sharing: History, impacts, models of provision, and future, Journal of
Public Transportation, 12(4):4156, 2009.

[2] M. Battarra, J.-F. Cordeau, and M. Iori. Pickup and delivery problems for goods trans-
portation, in Vehicle Routing: Problems, Methods, and Applications, Second Edition,
chapter 6, pages 161–191, SIAM, 2014.

[3] D. Chemla, F. Meunier, R. Wolfler Calvo, Bike sharing systems: Solving the static rebal-
ancing problem, Discrete Optimization, Volume 10, Issue 2, May 2013, Pages 120–146.

[4] M. Casazza, A. Ceselli, D. Chemla, F. Meunier, R. Wolfler Calvo, The Multiple Vehi-
cle Balancing Problem, technical report, 2016, https://hal.archives-ouvertes.fr/

hal-01351215.

38

Dynamic Cloudlet Assignment Problem: a
Column Generation Approach

Alberto Ceselli1, Marco Fiore2, Marco Premoli1, and Stefano Secci3

1Department of Computer Science, Università Degli Studi di Milano, Crema, Italy
2CNR-IEIIT, Torino, Italy

3UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France, e-mail: stefano.secci@upmc.fr

Major interest in network optimization is currently given to the integration of
clusters of virtualization servers, also referred to as ‘cloudlets’, into mobile access
networks for improved performance and reliability. Mobile access points (APs)
are assigned (i.e., route their packets) to one or more cloudlets, with a cost in
terms of latency for the users they provide connections to. Assignment of APs to
cloudlet can be changed over time, with a cloudlet synchronization cost. We tackle
the problem of the optimal assignment of APs to cloudlets over time, proposing
dedicated mathematical models and column generation algorithms.

1 Model

Given a set of mobile access point sites (APs in the remainder), a set of virtualization server
facility sites (cloudlets in the remainder) and the network connecting them, we aim at finding
the best schedule for the assignment of APs to cloudlets over a planning time horizon so that
the full AP demand is satisfied, no cloudlet capacity is exceeded and the management cost is
minimum. Let A be a set of APs locations, K be a set of cloudlets and T be a set of time-slots
in which the planning time horizon is split. For each i ∈ A and t ∈ T , let dti be the mobile
traffic demand of AP i in time-slot t. For each k ∈ K, let Ck be the amount of demand
that cloudlet k can handle in each time-slot and let U ∈ [0, 1] represent the maximum allowed
cloudlet utilization ratio. The assignment of an AP to a cloudlet implies a cost for the users
connected to the AP in terms of communication latency, which is computed as the product
of the demand traffic and the physical distance mi,k between AP i ∈ A and cloudlet k ∈ K
in the network. Assignments can change over time, and each change implies a switching cost
for the network, which is computed as the product of the demand traffic to be re-routed in
the time-slot and the distance lk′,k′′ between the pair of cloudlets k′, k′′ ∈ K in the network.
There is a trade-off between users’ and network costs: to minimize the former an AP has to be
assigned to its nearest cloudlet, while to minimize the latter an assignment to a distant cloudlet
might be preferable, as long as it is not changing over time; let α and β be two non-negative
parameters used to weight the relative importance of users and network costs.

We introduce two sets of variables: (i) variables xti,k model AP-cloudlet assignment, taking

value 1 if AP i ∈ A is assigned to cloudlet k ∈ K in time-slot t ∈ T ; and (ii) variables yti,j,k

39

model the change of assignment in consecutive time-slots, taking value 1 if AP i ∈ A is assigned
to cloudlet j ∈ K at time (t− 1) ∈ T and to cloudlet k ∈ K at time t ∈ T .

We formulate our Dynamic Cloudlet Assignment Problem (DCAP) as follows:

min α
∑

t∈T

∑

i∈A

∑

k∈K
dtimikx

t
ik + β

∑

t∈T

∑

i∈A

∑

(j,k)∈
K×K

dtiljky
t
ijk (1)

s.t.
∑

i∈A
dtix

t
ik ≤ UCk ∀t ∈ T, ∀k ∈ K (2)

∑

k∈K
xtik = 1 ∀i ∈ A,∀t ∈ T (3)

xtik =
∑

j∈K
ytijk ∀i ∈ A,∀t ∈ T \ {1},∀k ∈ K (4)

xtik =
∑

j∈K
yt+1
ikj ∀i ∈ A, ∀t ∈ T \ {|T |},∀k ∈ K (5)

y ∈ {0, 1},x ∈ {0, 1} (6)

Objective function (1) minimizes the trade-off between users’ and network costs. Constraints
(2) impose that for each cloudlet the total demand assigned in each time-slot does not exceed
a fraction U of its capacity; constraints (3) impose that the demand of each AP is completely
assigned; constraints (4) and (5) link x and y variables. In the literature, both single or multi
source assignment models are popular: in the former an AP is assigned to a single cloudlet in
each time slot, in the latter the demand of an AP can be split and served by several cloudlets in
the same time slot. We consider both possibilities: the single source conditions are enforced by
keeping constraints (6), while in the multi source variant constraints on x variables are relaxed
to x ∈ [0, 1]. We also remark that in the single source model, due to constraints (4) and (5),
y variables automatically take integer values when integrality conditions on x are enforced.

2 Algorithm

In order to tackle data instances with large set of time-slots and large scale networks, we
devised a column generation approach with a rounding strategy to restore integrality. Our
Dantzig-Wolfe decomposition on model (1) – (6) yields to the following master problem:

min
∑

i∈A

∑

p∈Ωi

(
α
∑

t∈T

∑

(j,k)∈
K×K

dtiljkỹ
t,p
ijk + β

∑

t∈T

∑

k∈K
dtimikx̃

t,p
i,k

)
zp (7)

s.t. −
∑

i∈A

∑

p∈Ωi

dtix̃
t,p
ik z

p ≥ −UCk ∀t ∈ T, ∀k ∈ K (8)

∑

p∈Ωi

zp = 1 ∀i ∈ A (9)

zp ≥ 0 (10)

where for each AP i ∈ A, Ωi is the set of feasible assignment paths, that model the sequence
of cloudlets to which the AP is assigned in the complete sequence of time-slots. For each path

40

p ∈ Ωi, let variable zp take value 1 if path p is chosen to assign the related AP to the sequence
of cloudlets. A path p ∈ Ωi is encoded via binary parameters x̃t,pik and ỹt,pijk, which behave as the
corresponding variables x and y. Objective function (7) aims in minimizing the management
cost related to the chosen paths; (8) impose the maximum cloudlet utilization in a time-slot;
(9) impose that for each AP a combination of assignment paths are chosen and hence that its
demand is fulfilled in every time-slot.

Since formulation (7) – (9) contains a combinatorial number of variables, we optimize it with
column generation techniques. Let λt,k be the non-negative dual variables of constraints (8)
and ηi be the free dual variables of constraints (9). The pricing problem is a shortest path for
each AP. The corresponding formulation, given a fixed AP î ∈ A, is the following:

min − ηî + α
∑

t∈T

∑

(j,k)∈
K×K

dt
î
ljky

t
îjk

+
∑

t∈T

∑

k∈K

(
βdt

î
mik + dt

î
λt,k
)
xt
î,k

(11)

s.t.
∑

k∈K
xt
îk

= 1 ∀t ∈ T (12)

xt
îk

=
∑

j∈K
yt
îjk

∀t ∈ T \ {1}, ∀k ∈ K (13)

xt
îk

=
∑

j∈K
yt+1
îkj

∀t ∈ T \ {T}, ∀k ∈ K (14)

x ≥ 0,y ≥ 0 (15)

This shortest path problem involves a directed layered graph G(N,A), with |T | layers, one
for each time-slot. Each layer has one node for each cloudlet and one arc for each pair of nodes
in consecutive layers. Each node (t, k) ∈ T ×K has an associated cost given by dti(βmik +λt,k),
while each arc connecting nodes (t, j) and (t+1, k) has an associated weight given by αdt+1

i lj,k.
This shortest path problem can be exactly solved with computational complexity O(TK2) by
means of dynamic programming.
Restoring Integrality In order to restore integrality, a rounding algorithm is executed

at every CG iteration. Given the fractional solution S̃ of the CG master problem and the
fractional variables values z̃, we can compute the values of the corresponding x̃ variables. For
each time-slot t ∈ T and for each AP sorted by descending highest fractional value of x̃tik,
the assignment is made with the cloudlet with enough residual capacity corresponding with
the highest x̃. After each assignment the residual capacity of the chosen cloudlet is updated.
Unfortunately, the rounding problem is a generalized assignment, which is APX-Hard: no
a-priori guarantee on reaching feasibility is given by our algorithm, even if experimentally it
proved to be successful in almost all CG iterations.
Greedy Initial Solution A simple greedy heuristic is used to initialize the master problem.

It works as follows: for each time slot, APs are sorted by descending demand in the time slot
and each AP is associated to a cloudlet chosen according to these rules: (i) take the cloudlet
to which the AP was associated in the previous time-slot if the demand of the AP does not
exceed its residual capacity and if it is not the first time-slot; (ii) find the nearest cloudlet for
which the AP demand does not exceed the residual capacity, otherwise. A solution is provided
in O(TA log(A)K). Still no guarantees neither on quality nor on feasibility of the solution are
given.

41

3 Computational Results

We implemented our algorithms in C++, using CPLEX 12.6 to solve the master LP subprob-
lems, running tests on an Intel i7 4GHz workstation equipped with 32 GB of RAM. We created
two datasets. The first one aims at reproducing realistic scenarii. We used a synthetic set of
1400 APs, whose coordinates are randomly drawn from two normal distributions, in order to
model a metropolitan circular area with an higher density of APs in the city center. Ten clus-
ters of APs were created with a standard k-means algorithm: their centers represent cloudlet
locations and distances mik and ljk were computed as euclidean distances accordingly. Plan-
ning time horizon was set to a single day. We experimented on four time discretizations: two
hours, one hour, thirty minutes and fifteen minutes, corresponding to 12, 24, 48 and 96 time-
slots, respectively. We drew mobile traffic demands for the fifteen-minute time-slots so that:
(i) within a time-slot the distribution of APs demand follows a truncated heavy-tail power law
distribution, and hence the majority of APs have low demand but a significant number of APs
have high demand; (ii) the sum of all demands in a time-slot follows the standard daily activity
profile, which shows a steep rise of the demand during morning rush-hour, followed by a stable
rise until the peak of the evening rush-hour, that is in turn followed by a fall; and (iii) for the
single AP, the change of demand during the day follows the same trend of the sum of demands.
Demand for larger time slots has been obtained by aggregation. The second dataset aims at
stressing our algorithms from a computational point of view. Demands were drawn uniformly
at random for the fifteen-minute time slots, with no relationship between demands in consecu-
tive time-slots. We set the demand of an AP in each time slot as the average of the demands in
the fifteen-minute time-slots that are covered by it. Moreover for each demand matrix we com-
puted five different instances by perturbing all demands with noise drawn uniformly at random
in the interval [−5%,+5%]. Cloudlet capacity was set equal to

(
maxt∈T

∑
i∈A d

t
i/|K|

)
· 1.05.

Finally, parameters α and β were both set to 0.5, while parameter U was set to 1.
Table 1 reports for each time-slot granularity (columns), and for the realistic and random

datasets (rows), the mean, minimum and maximum values computed over the five perturbed
instances of: (i) the execution time of our algorithm in seconds and (ii) the percentage gap
between the final fractional solution and the best integer one found with rounding. We can
notice that the realistic demands show better results both in terms of final gap and execution
times. In particular, while in the realistic dataset the optimality gap is always lower than 1%
and the finer discretization requires less than one minute of execution time, in the random
dataset the gap is always higher than 1.5% and the execution takes up to several minutes.
We also notice that on the realistic dataset, the optimality gap increases together with the
number of time-slots, while an opposite behavior is observed on the random dataset. We
impute this behavior to the smooth trend of realistic demands during the day, while random
dataset involves sudden changes in consecutive time-slots.

no. time-slots 12 24 48 96
data type stats. gap time gap time gap time gap time

Realistic
mean 0.96% 1.8s 0.70% 4.6s 0.61% 12.2s 0.42% 54.4s
min 0.69% 1s 0.60% 4s 0.44% 11s 0.32% 51s
max 1.31% 2s 0.85% 5s 0.73% 14s 0.48% 56s

Random
mean 1.77% 5s 1.89% 18s 2.25% 110.2s 2.53% 1165.6s
min 1.69% 5s 1.63% 17s 2.13% 106s 2.42% 1098s
max 1.88% 5s 2.05% 19s 2.41% 112s 2.67% 1244s

Table 1: Computational Results Statistics

42

Improved Space-efficient Linear Time
Algorithms for Some Classical Graph

Problems

Sankardeep Chakraborty1, Seungbum Jo2, and Srinivasa Rao Satti3

1The Institute of Mathematical Sciences, HBNI, Chennai, India. sankardeep@imsc.res.in
2University of Siegen, Siegen, Germany. seungbum.jo@uni-siegen.de
3Seoul National University, Seoul, South Korea. ssrao@cse.snu.ac.kr

We provide space-efficient linear time algorithms for computing bridges, topologi-
cal sorting, and strongly connected components improving on several recent results
of Elmasry et al. [STACS’15], Banerjee et al. [COCOON’16] and Chakraborty
et al. [ISAAC’16]. En route, we also provide another DFS implementation with
weaker input graph representation assumption without compromising on the time
and space bounds of the earlier results.

1 Introduction

Since the early days of designing graph algorithms, researchers have developed several ap-
proaches for testing whether a given undirected (or directed) graph G = (V,E) with n vertices
and m edges is (strongly connected) biconnected and/or 2-edge connected, and finding cut
vertices and/or bridges of G. All of these methods use depth-first search (DFS) as the back-
bone to design the main algorithm. The classical linear time algorithms due to Tarjan [8, 9]
computes the so-called “low-point” values (which are defined in terms of a DFS-tree of G) for
every vertex v, and checks some conditions using that to determine whether G has the desired
property. There are other linear time algorithms as well for these problems (see [7] and all
the references therein). All of these classical algorithms take O(m + n) time and O(n) words
(our model of computation is the standard word RAM model with word size w = Ω(lg n) bits)
of space. Our aim is to improve the space bounds of these algorithms without increasing the
running time.

1.1 Motivation and Related Work

Motivated mainly by the “big data” phenomenon among others, recently there has been a surge
of interest in improving the space complexity of the fundamental linear time graph algorithms
by paying little or no penalty in the running time i.e., reducing the working space of the classical
graph algorithms (which generally take O(n lg n) bits) to o(n lg n) bits without compromising
on time. Towards this, Elmasry et al. [4] gave, among others, an implementation for DFS
taking O(m + n) time and O(n lg lg n) bits of space. For sparse graphs (when m = O(n)), the
space bound was improved further to O(n) bits keeping the same linear time in [1]. Banerjee

43

Time Space (in bits) DFS
Testing biconnectivity Testing 2-edge connectivity Topological Testing strong

& reporting cut vertices & reporting bridges sort connectivity

O(n + m) O(n lg n) [3] [8] [9] [3] [8]
O(n + m) O(n + m) [1, 6] [1] [1] This paper This paper
O(n + m) O(n lg(m/n)) [2] [2] [2] This paper This paper
O(n + m) O(n lg lg n) [4] [6] This paper [4] [4]

Table 1: Summary of our results.

et al. [1] gave, among others, a space efficient implementation for performing BFS using just
2n + o(n) bits of space and linear time, improving upon the result of [4]. Such algorithms for
a few other graph problems also have been considered recently [2, 6].

1.2 Our Results

We assume that the input graph G, which is represented using adjacency array [1, 4, 2, 6], i.e.,
G is represented by an array of length |V | where the i-th entry stores a pointer to an array
that stores all the neighbors of the i-th vertex, is given in a read-only memory with a limited
read-write working memory, and write-only output. We count space in terms of the number of
bits in workspace used by the algorithms. Our main goal here is to improve the space bounds
of some of the classical and fundamental graph algorithms. We summarize all our main results
in Table 1. In this paper, basically we complete the full spectrum of results regarding the
space bounds for these problems keeping the running time linear by providing/improving the
missing/existing algorithms in the recent space efficient graph algorithm literature. Due to
lack of space, we provide only sketches of our proofs.

2 Testing 2-Edge Connectivity and Finding Bridges

In an undirected graph G, a bridge is an edge that when removed (without removing the
vertices) from a graph creates more components than previously in the graph. A (connected)
graph with at least two vertices is 2-edge-connected if and only if it has no bridge. Let T denote
the DFS tree of G. Following Kammer et al. [6], we call a tree edge (u, v) of T with u being
the parent of v full marked if there is a back edge from a descendant of v to a strict ancestor
of u, half marked if it is not full marked and there exists a back edge from a descendant of
v to u, and unmarked, otherwise. They use this definition to prove the following: (i) every
vertex u (except the root r) is a cut vertex exactly if at least one of the edges from u to one
of its children is either an unmarked edge or a half marked edge, and (ii) root r is a cut vertex
exactly if it has at least two children in T . Based on the above characterization, they gave
O(m+n) time and O(n lg lg n) bits algorithm to test/report if G has any cut vertex. Our main
observation is that we can give a similar characterization for bridges in G, and essentially using
a similar implementation, we can also obtain O(m + n) time and O(n lg lgn) bits algorithms
for testing 2-edge connectivity and reporting bridges of G. We start with the following lemma.

Lemma 1. A tree edge e = (u, v) in T is a bridge of G if and only if it is unmarked.

Proof sketch: If e is unmarked, then no descendants of v reaches u or any strict ancestor of
u, so deleting e would result in disconnected graph, thus e has to be a bridge. On the other
direction, it is easy to see that if e is a bridge, it has to be an unmarked edge.

Now we state our theorem below.

44

Theorem 2. Given an undirected graph G, in O(m+n) time and O(n lg lg n) bits of space we
can determine whether G is 2-edge connected. If G is not 2-edge connected, then in the same
amount of time and space, we can compute and output all the bridges of G.

Proof sketch: Using Lemma 1 and the similar implementation of using stack compression and
other tools of the algorithm provided in Section 3.2 of Kammer et al. [6] with few modifications,
we can prove the theorem.

Note that the space bound of Theorem 2 improves the results of [1] and [2] for sufficiently
dense graphs (when m = ω(n lg lgn) and m = ω(n lgO(1) n) respectively) while keeping the
same linear runtime (see Table 1).

3 DFS without Cross Pointers

Banerjee et al. [1] and subsequently Kammer et al. [6] gave O(m+ n) bits and O(m+ n) time
implementations of DFS improving on the bounds of [4] for sparse graphs. But both of these
DFS implementations assume that the input graph is represented using the adjacency array
along with cross pointers i.e., for undirected graphs, every neighbour v in the adjacency array
of a vertex u stores a pointer to the position of vertex u in the adjacency array of v. See [4] for
detailed definitions for directed graphs. We emphasize that this input assumption can double
the space usage, compared to the raw adjacency array in worst case. In what follows, we
provide the proof sketch of a DFS implementation taking the same time and space bounds as
that of [1, 6] but without using the cross pointers. Our main theorem is as follows.

Theorem 3. Given a directed or undirected graph G, represented as adjacency array, we can
perform DFS traversal of G using O(m + n) bits and O(m + n) time.

Proof sketch: We essentially modify the proof of [1] which uses a bitvector A of length
O(m+n) having one to one mapping with the unary encoding of the degree sequence to mark
the tree edges, and subsequently uses cross pointers to find the parent of any vertex during
backtracking as well as starting with next unvisited vertex after backtracking. We note that we
can represent the parents of all the vertices in another bitvector P of length O(m+n) (parallel
to A). Now to perform backtracking efficiently, we could use the constant time append only
structure (also with constant time rank/select) of Grossi et al. [5] along with the P array. With
these modifications, we could get rid of cross pointers without compromising on the running
time and space bound of the earlier algorithms.

4 Testing Strong Connectivity and Topological Sorting

Towards giving improved space efficient algorithms for strong connectivity (SC) and topological
sorting (TS), we first improve Lemma 4.1 of [4] which says the following: if DFS of a directed
graph G takes T (n,m) time and S(n,m) space, then we can output the vertices of G in
reverse postorder of the DFS tree T of G taking O(T (n,m)) time and O(S(n,m) + n lg lg n)
space. Combining this lemma with the classical algorithms for SC and TS [3] they obtained
O(n lg lgn) bits and O(m+ n) time algorithms for both these problems. We improve these by
showing the following,

Theorem 4. If DFS of a directed graph G takes T (n,m) time and S(n,m) space, then the
vertices of G can be output in reverse postorder with respect to a DFS forest of G taking

45

O(T (n,m)) time and O(S(n,m) + m + n) space. As a result, we can also solve SC and TS in
O(m + n) time using O(n + m) bits of space.

Proof sketch: We use the DFS algorithm of Theorem 3 to first mark all the tree edges in
the array A. Now we start with the rightmost leaf vertex of the DFS tree and use rank/select
operations [5] on A and P (as defined in the proof of Theorem 3) carefully to traverse the tree
in reverse direction (along with standard DFS backtracking etc) to generate reverse postorder
sequence. Now using this as the back bone of the classical algorithms, we obtain O(m+n) bit
and O(n + m) time algorithms for SC and TS.

Theorem 4 improves the result of [4] for sparse (when m = O(n)) graphs. Now if we use the
DFS algorithm of Chakraborty et al. [2] and modify it suitably to perform the traversal of the
DFS tree in reverse, we obtain the following result.

Theorem 5. If DFS of a directed graph G takes T (n,m) time and S(n,m) space, then the
vertices of G can be output in reverse postorder with respect to a DFS forest of G taking
O(T (n,m)) time and O(S(n,m) +n lg(m/n)) space. As a result, we can also solve SC and TS
using O(m + n) time and O(n lg(m/n)) bits.

References

[1] N. Banerjee, S. Chakraborty, and V. Raman. Improved space efficient algorithms for BFS,
DFS and applications. In 22nd COCOON, volume 9797, pages 119–130. Springer, LNCS,
2016.

[2] S. Chakraborty, V. Raman, and S. R. Satti. Biconnectivity, chain decomposition and st-
numbering using O(n) bits. In 27th ISAAC, volume 64 of LIPIcs, pages 22:1–22:13. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.

[4] A. Elmasry, T. Hagerup, and F. Kammer. Space-efficient basic graph algorithms. In 32nd
STACS, pages 288–301, 2015.

[5] R. Grossi and G. Ottaviano. The wavelet trie: maintaining an indexed sequence of strings
in compressed space. In 31st PODS, pages 203–214, 2012.

[6] F. Kammer, D. Kratsch, and M. Laudahn. Space-efficient biconnected components and
recognition of outerplanar graphs. In 41st MFCS, 2016.

[7] J. M. Schmidt. A simple test on 2-vertex- and 2-edge-connectivity. Inf. Process. Lett.,
113(7):241–244, 2013.

[8] R. E. Tarjan. Depth-first search and linear graph algorithms. SICOMP, 1(2):146–160,
1972.

[9] R. E. Tarjan. A note on finding the bridges of a graph. Inf. Pro. Lett., 2(6):160–161, 1974.

46

Exact Algorithms for Maximum Transitive
Subgraph Problem

Sourav Chakraborty1 and Nitesh Jha2

1Centrum Wiskunde & Informatica, Amsterdam, Netherlands
1,2Chennai Mathematical Institute, Chennai, India, e-mail: {sourav, nj}@cmi.ac.in

We study the problem of computing a Maximum Transitive Subgraph (MTS) of a
given directed graph. This problem is known to be NP-hard. We give an algorithm
that runs in time O(4k

2
n2) to output an MTS for a graph with treewidth k.

1. Introduction

Given a directed graph G = (V,E), a subgraph S of G is said to be transitive if for every pair
of edges u→ v and v → w in S, the edge u→ w is also present in S. S is called a Maximum
Transitive Subgraph (MTS) if it is of the largest size (number of edges) possible. The same
problem can also be posed in a weighted setting where edges have weights. Our goal in this
article is to compute an MTS of a given graph.

The transitivity structure in a binary relation (directed graph) is a fundamental object that
has a rich history in multiple areas of mathematics and computer science. Since transitivity
is a desired structure, it is approached in multiple ways. Two most common are transitive
closures and transitive subgraphs. The problems can then be posed in the form of an optimal
or approximate solution. Problems have also been studied under the notion of distance from
a transitive structure.

The problem of computing an MTS for a given graph is a well known NP-hard problem [10].
The recent work [2] gives a simple 0.25-approximation algorithm of obtaining an MTS in a
general graph. For the case where the underlying undirected graph is triangle free, it gives a
0.874-approximation for the MTS problem. The idea there is to look at the related problem of
directed maximum cuts in the same graph. We continue the study of algorithms for computing
the MTS under different input restrictions.

Our main goal in this article is to understand the parameterized complexity of the MTS
problem. A parameterization of a problem assigns an integer k to each input instance I and
we say that a the problem is fixed-parameter tractable if there is an algorithm that solves the
problem in time f(k) · |I|O(1). Here, f is any computable function. First systematic study of
parameterized complexity was done by Downey and Fellows [5]. More recent account of the
field can be found in the texts [6, 7, 4].

Arnborg et al. [1] showed that the problem of MTS is fixed parameter tractable. They
give an alternate proof of Courcelle’s theorem [3] and express the MTS problem in Extended
Monadic Second Order, thus giving a meta-algorithm for the problem. This algorithm is not
explicit and f is known to be only a computable function.

47

Our main contribution in this paper is to prove that the problem of MTS is fixed parameter
tractable by giving an explicit algorithm. For a given directed graph with treewidth at most
k, we give an algorithm, for finding MTS, which runs in time O(4k

2
n2).

In Appendix A, we also give a poly-time algorithm for computing an MTS in a directed
tree, and in Appendix B, we present an algorithm for finding MTS in a directed graph with
treewidth at most k, in time O(nk

2
). Our main result (presented in Section 2) can be thought

of as a generalization to these algorithms. Our main result is stated below.

Theorem 1. There exists an algorithm that runs in time O(4k
2
n2) to output an MTS for a

graph with treewidth k.

There are explicit FPT algorithms known for related problems. For example, [8] shows that
the problem of deciding whether a directed graph has a transitive induced subgraph of size k
is fixed-parameter tractable. But there was no known explicit algorithm for the MTS problem
parametrized by treewidth.

The related problem of Transitivity Editing is the problem of computing the minimum
number of edge insertions or deletions in order to make the input digraph transitive. Weller et al
[9] prove its NP-hardness and give a fixed-parameter algorithm that runs in time O(2.57k +n3)
for an n-vertex digraph if k edge modifications are sufficient to make the digraph transitive.

Notation

For any set S and x ∈ S, define S − x = S \ {x}. Let G = (V,E) be a given directed graph.
For v ∈ V, e ∈ E, define G − v to be the graph obtained by removing the vertex v from G
and G \ e represents the graph obtained by deleting the edge e from G. The notation F ⊆ G
defines a subgraph F of G. For any subgraph F of G, V (F) defines the vertex set of F and
E(F) defines the edge set of F . For U ⊆ V , G(U) defines the induced subgraph on U .

For A,B ⊆ V , define E(A,B) = {u→ v : u ∈ A, v ∈ B} and E(A,B) = E(A,B) ∪ E(B,A).
In the context of transitivity, we say that the two-path u→ v → w is complete if u→ w ∈ E.
If u→ w /∈ E, the two-path is called incomplete.

2. MTS is FPT Parameterised by Treewidth

We first introduce the basics of tree decomposition of an undirected graph G = (V,E). We
borrow the notations from [4]. Let T = (T, {Xt}t∈V (T)) be a tree decomposition, where T is
a tree whose every node t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the
following three conditions hold:

1. ∪t∈V (T)Xt = V (G).
2. ∀ edge (u, v) ∈ E(G),∃t ∈ T with u, v ∈ Xt.
3. ∀u ∈ V (G), the set Tu = {t ∈ V (T) : u ∈ Xt} induces a connected subtree of T .
Further, we use what is called a nice tree decomposition T = (T, {Xt}t∈V (T)) of G. Such a

decomposition has the following properties.
1. The leaf and the root nodes are empty.
2. For every non-leaf node t is one of the following types:

a) Introduce: t has exactly one child t′ with Xt = Xt′ ∪ {u} for some u /∈ Xt′

b) Forget: t has exactly one child t′ with Xt = Xt′ \ {u} for some u ∈ Xt′

c) Join: t has two children t′ and t′′ with Xt = Xt′ = Xt′′ .

48

We perform a bottom up dynamic programming on T starting from the leaves and ending
at the root. We describe the calculations performed at a node of any type (categorised above)
using the computation performed at the children nodes. For any node t ∈ T , denote by Vt the
union of the bags associated with all the nodes in the subtree rooted at t, including Xt. Let
Gt define the induced graph on Vt.

We define a table entry m[t, F, I, O, U, Y] for each node t ∈ T , for each transitive subgraph
F ⊆ E(Xt) and for each partition (I,O, U, Y) of Xt. The entry M = m[t, F, I, O, U, Y] contains
the MTS on G(Vt) with the restriction that G(Xt) ∩M = F and in M ,
• no edges from the set E(I, Vt \Xt) are allowed,
• no edges from the set E(Vt \Xt, O) are allowed,
• any edge from the set E(Vt \Xt, U) is allowed, and
• no edges from the set E(Vt \Xt, Y) are allowed.

Vertices in U are said to be unrestricted. This partitioning has been defined to support the
Join operation at a join node in the tree decomposition. The idea is same as before - avoid
two-paths across separated partitions and avoid incomplete two-paths in the separator.

Leaf node: The only valid cell entry here is m[t, φ, φ, φ, φ, φ] = φ.

Introduce node: Suppose node t has child node t′ such that Xt = Xt′ ∪{v}. For any given
partition (I,O, U, Y) of Xt and F ⊆ G(Xt), we need to compute m[t, F, I, O, U, Y].

First notice that the introduced vertex v can have edges to only the vertices in the set Xt′ .
Also, by definition, MTS(Gt) ∩ G(Xt) = F . Applying both these conditions together, if v is
not in V (F), no edge incident on v can be included in the MTS of Gt. Hence, for v /∈ V (F),

m[t, F, I, O, U, Y] = m[t′, F, I − v,O − v, U − v, Y − v]

Now we consider the case where v ∈ V (F). For a vertex r ∈ V (G) and X ⊆ E(G), define
the in-neighbours of r in X as N i

X(r) = {s : s→ r ∈ X} and the out-neighbours of r in X as
No

X(r) = {s : r → s ∈ X}. Define NX(r) = N i
X(r) ∪No

X(r).
Consider the set NXt(v) \ NF (v). These neighbours of v in Xt, wherever they may lie in

the partition (I,O, U, Y), can be kept as is in their designated partitions for recursion. The
argument is as follows. Consider u ∈ NXt(v) \NF (v). We want to check if any edge through
u breaks transitivity. If u /∈ V (F), then u does not interact with any other vertex in Xt by
definition and hence transitivity is maintained as before. If u ∈ V (F), any edge in F incident
on vertex u is already a part of a transitive set since F is transitive by definition.

We now deal with the set NF (v). Consider a vertex u ∈ NF (v). Following useful cases arise.
1. u ∈ I ∩ N i

F (v): Here, an edge passing through u may break the transitivity. Such a
vertex u must be removed from I and placed in O.

2. u ∈ O ∩No
F (v): This is similar to the last case. We should move u from O to I.

3. u ∈ U ∩NF (v): Since the edges E(u, Vt \Xt) are unrestricted to participate in an MTS,
transitivity may break in two ways. Incomplete two-path of the form r → u → v or
v → u→ r where r ∈ Vt \Xt may result. We should disallow these cases.

4. u ∈ Y ∩NF (v): This case is fine as E(u, Vt \Xt) = φ.

49

We incorporate all these restrictions in the following computation.

F ′ = F − v
I ′ = (I \N i

F (v)) ∪ (O ∩No
F (v)) ∪ (U ∩No

F (v))

O′ = (O \No
F (v)) ∪ (I ∩N i

F (v)) ∪ (U ∩N i
F (v))

U ′ = U \NF (v)

Y ′ = Y

The update method is then m[t, F, I, O, U, Y] = m[t′, F ′, I ′, O′, U ′, Y ′] ∪ F .

Forget Node: Suppose node t has child t′ such that Xt = Xt′ \{v}. We update the current
entry as follows:

m[t, F, I, O, U, Y] = maxm[t′, F ′, I ′, O′, U ′, Y ′]

where the maximum is over the following conditions:

F ′|Xt = F, I ′ = I, O′ = O, Y ′ = Y, U ′ = U ∪ {v}

Here, the transitive set F ′ is allowed to include the vertex v resulting in the condition
F ′|Xt = F . We also allow v to have unrestricted edges since this effectively covers all the
cases - only incoming edges on v, or only outgoing edges from v, or the case where v has both
incoming and outgoing edges.

Join Node: Suppose node t has children t1 and t2 such that Xt = Xt1 = Xt2 . Define
arbitrary partitions (to be fixed below) Xt1 = I ′]O′] U ′] Y ′ and Xt2 = I ′′]O′′] U ′′] Y ′′.
We have the following rule for updating the current entry:

m[t, F, I, O, U, Y] = max(m[t1, F, I
′, O′, U ′, Y ′] ∪m[t1, F, I

′′, O′′, U ′′, Y ′′])

under the restriction that: I ′ ⊇ I, I ′′ ⊇ I and O′ ⊇ O,O′′ ⊇ O
For each vertex v ∈ U , one of the following is true: v ∈ I ′∩I ′′, or v ∈ O′∩O′′, or v ∈ U ′∩Y ′′,

or v ∈ Y ′ ∩ U ′′.
Here, we keep the F same in both t1 and t2 as required. In order to join at any vertex v in I,

we demand such a vertex must be present in both I ′ and I ′′ but we also allow these sets to be
larger. This is required as this leaves the possibility of a larger combination while transitivity
is still maintained. A similar restriction is employed on O′ and O′′.

The vertices v in U are unrestricted but we need to be careful while using unrestricted
vertices in the join operation. Such a vertex should only be allowed to be unrestricted on one
side but completely isolated on the other side. This gives us the possibilities v ∈ U ′ ∩ Y ′′ or
v ∈ Y ′ ∩ U ′′. But this restriction forbids the possibility of edges being used on both sides of
v. Such a case could occur if v uses only incoming (or outgoing) edges on both the sides. To
accommodate this, we have the options of v ∈ I ′ ∩ I ′′ or v ∈ O′ ∩ O′′. Finally, we take the
maximum over all the legitimate join operations.

We now estimate the running time of our algorithm. Assuming the input graph has treewidth
k, each node Xt is of size at most k + 1. The number of partitions of type (I,O, U, Y) of Xt

is at most 2k+4. The number of transitive subgraphs F of Xt is at most 2k
2
. A single update

of m[·] at any node can be done in at most n2 steps. So a simple upper bound to the time
complexity is 4k

2
n2.

50

3. Conclusion

In this article, we have continued the systematic study of computing a Maximum Transitive
Subgraph of a given directed graph addressed recently in [2]. We show that this problem
is fixed-parameter tractable when parameterized by treewidth. In particular, we give an al-
gorithm that runs in time O(4k

2
n2) to output an MTS for a graph with treewidth k. An

immediate question that arises is – whether we can reduce the exponent k2 to O(k).
Another interesting question that we have not addressed here is a lower bound for this

problem. It would be interesting to arrive at any lower bound under the standard assumption
of Exponential Time Hypothesis (ETH).

References

[1] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Problems easy for tree-decomposable
graphs (extended abstract). In Automata, Languages and Programming, 15th Interna-
tional Colloquium, ICALP88, Tampere, Finland, July 11-15, 1988, Proceedings, pages
38–51, 1988.

[2] Sourav Chakraborty, Shamik Ghosh, Nitesh Jha, and Sasanka Roy. Maximal and max-
imum transitive relation contained in a given binary relation. In Computing and Com-
binatorics - 21st International Conference, COCOON 2015, Beijing, China, August 4-6,
2015, Proceedings, pages 587–600, 2015.

[3] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

[4] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer,
2015.

[5] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999.

[6] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

[7] Rolf Niedermeier. Invitation to fixed-parameter algorithms. Oxford University Press, 2006.

[8] Venkatesh Raman and Somnath Sikdar. Parameterized complexity of the induced sub-
graph problem in directed graphs. Inf. Process. Lett., 104(3):79–85, 2007.

[9] Mathias Weller, Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. On
making directed graphs transitive. In Algorithms and Data Structures, 11th International
Symposium, WADS 2009, Banff, Canada, August 21-23, 2009. Proceedings, pages 542–
553, 2009.

[10] Mihalis Yannakakis. Node- and edge-deletion np-complete problems. In Proceedings of
the 10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978, San Diego,
California, USA, pages 253–264, 1978.

51

52

Upper and lower bounds for the Swath
Segment Selection Problem

Roberto Cordone1, Giovanni Righini1, and Andrea Taverna2

1Università degli Studi di Milano - Dipartimento di Informatica
2Università degli Studi di Milano - Dipartimento di Matematica

1 Problem definition

Polar orbiting satellites have a cameras pointed downwards which allows to monitor a strip
of the Earth, named swath. The Earth’s rotation implies that swaths monitored in north-to-
south and south-to-north semi-orbits cross each other forming a sort of checkerboard. The
Swath Segment Selection Problem (SSSP) models the problem of deciding which parcels of
land should be monitored by the satellite and in which semi-orbit. For the sake of simplicity,
we assume a time horizon in which a parcel can be monitored only in two opposite semi-orbits.
The parcels can be modelled as cells (i, j) of a rectangular matrix, in which the set of m rows
I correspond to the north-to-south semi-orbits and the set of n columns J corresponds to
the south-to-north semi-orbits. A prize function p : I × J → N represents the value gained
monitoring each parcel, and two weight functions h : I×J → N and k : I×J → N provide the
amounts of memory required to monitor parcel (i, j) during the semi-orbits associated to row
i and to column j; they can be different due to the shape of the parcel. The on-board memory
and the downlink time available at the end of each semi-orbit limits the parcels that can be
monitored in a semi-orbit; this is modelled by two capacity functions, H : I → N for the rows
and K : J → N for the columns.

The SSSP can be formulated with two families of binary variables: if cell (i, j) is selected
row-wise, xij = 1 and yij = 0; if it is selected column-wise, yij = 1 and xij = 0; if it is not
selected, xij = yij = 0:

max z =
∑

i∈I

∑

j∈J
pij (xij + yij) (1a)

s.t.
∑

j∈J
aijxij ≤ Ai i ∈ I (1b)

∑

i∈I
bijyij ≤ Bi j ∈ J (1c)

xij + yij ≤ 1 i ∈ I, j ∈ J (1d)

xij , yij ∈ {0, 1} i ∈ I, j ∈ J (1e)

The SSSP has been solved with a branch-and-bound based on the continuous relaxation
of (1) in [6], and with a branch-and-bound based on the Lagrangean relaxation of con-
straints (1d) in [3]. A similar model has been proposed and treated with Constraint Program-
ming in [1]. In this paper, we discuss for the first time the complexity and approximability

53

of the SSSP, we classify a number of Lagrangean relaxations and decompositions, establishing
some dominance relations between them, and we make numerical experiments on two of them:
the former is a Lagrangean relaxation woth the integrality property, which allows a very ef-
ficient multiplier update mechanism; the latter is theoretically stronger. Finally, we discuss
a meta-heuristic approach based on the Variable Neighborhood Descent (VND) and Variable
Neighborhood Search (VNS) frameworks.

2 Complexity and approximability

Theorem 1. The SSSP is NP-complete in the strong sense.

Remark 2. The SSSP admits an obvious exhaustive algorithm of O (mn 3mn) complexity.

Theorem 3. The SSSP can be solved in O
(
mnmin

(∏
j∈J

Kj max
i∈I

Hi,
∏
i∈I

Hi max
j∈J

Kj

))
time.

Both algorithms are impractical, unless for very small matrices or very tight capacity con-
straints.

Theorem 4. The SSSP can be 4-approximated in polynomial time and 2-approximated in
pseudo-polynomial time.

Owing to space limitations, proofs are omitted.

3 Lagrangean relaxations and decompositions

Formulation (1) admits several possible Lagrangean relaxations and decompositions. Relaxing
one or more of its three families of constraints yields 7 different Lagrangean relaxations, which
can be denoted as LRs, where string s includes one or more of the following symbols, according
to the relaxed families of constraints: R for the row-knapsack constraints (1b), C for the
column-knapsack constraints (1c) and D for the disjunctive contraints (1d).

Relaxation LRD was applied in [3] to obtain the best known current algorithm for the SSSP.
We here consider the other relaxations. First of all, of course, LRs dominates LRs′ whenever it
relaxes a smaller family of constraints (in short, s ⊆ s′ ⇒ LRs � LRs′). Then, the integrality
property [5] allows to prove that LRRC , LRRCD and the continuous relaxation CR are all
reciprocally equivalent and weaker than the other ones. The Lagrangean subproblem LRRC

can be solved by simple inspection to obtain an extremely fast upper bound:

z (λ, µ) = max
x,y

[∑

i∈I

∑

j∈J
(pij − λihij)xij +

∑

i∈I

∑

j∈J
(pij − µjkij) yij

]
+
∑

i∈I
λiHi +

∑

j∈J
µjKj (2a)

s.t. xij + yij ≤ 1 i ∈ I, j ∈ J (2b)

xij , yij ∈ {0, 1} i ∈ I, j ∈ J (2c)

The upper bound z (λ, µ) is a piecewise linear function of the λi and µj multipliers. The dual
problem of tuning them so as to minimize the upper bound enjoys a nice structural property:
for fixed values of all λi, z

(
λ̄, µ

)
is a sum of independent convex piecewise linear functions

in the µj multipliers. Conversely, for fixed values of all µj , z (λ, µ̄) is a sum of independent
convex piecewise linear functions in the λi multipliers. This allows the following very efficient
strategy:

54

• fix a starting value for the row multipliers λi (i ∈ I)

• for each column j ∈ J , enumerate the breakpoint values in which the derivative of
z (λ, µ) changes, corresponding to a change in the optimal solution of the Lagrangean
subproblem (2)

• select independently for each column multipliers µj (j ∈ J) the breakpoint which mini-
mizes z (λ, µ);

• fix the column multipliers µj to the optimal values found and apply the process to the
row multipliers λi (i ∈ I); then, go back to the starting point.

This procedure does not actually guarantee to reach the optimal bound, but our experiments
show that it is order of magnitude faster than the subgradient procedure used in [3] to optimize
the LRD relaxation and numerically much stabler. In a relevant minority of instances, it can
even provide a better bound in practice.

Lagrangean decomposition can be applied to the SSSP by duplicating the binary variables
and relaxing the coupling constraints xij = x′ij and yij = y′ij . Referring to the three families
of constraints, it is possible to obtain 3 Lagrangean decompositions, in which two families of
constraints use the original variables and the third one uses the new ones. We denote them by
LDRC|D, LDRD|C and LDCD|R.

Thanks to the integrality property, the LDRC|D decomposition is equivalent to the LRD

relaxation investigated in [3]. The other two decompositions can both be strengthened by
reintroducing the disjunctive constraints x′ij + y′ij also in the second subproblem. The result
is the same in the two cases, and we denote it as LDRD|CD:

z (λ, µ) = max
x,y

{ n∑

i=1

m∑

j=1

[(pi,j − λij)xij + (pij − µi,j)yij]
}

+ max
x′,y′

{ n∑

i=1

m∑

j=1

(x′ijλij + µijy
′
ij)

}

(3a)

s.t. xi,j + yi,j ≤ 1 i ∈ I, j ∈ J (3b)
m∑

j=1

hi,jxi,j ≤ Hi i ∈ I (3c)

x′i,j + y′i,j ≤ 1 i ∈ I, j ∈ J (3d)
m∑

j=1

ki,jy
′
i,j ≤ Kj j ∈ J (3e)

x′ij , y
′
ij ∈ {0, 1} i ∈ I, j ∈ J (3f)

This decomposition is theoretically stronger than the Lagrangean relaxations LDRD and
LDCD [5], and therefore stronger than all Lagrangean relaxations except LRD. To the best of
our understanding, LDRD|CD is neither stronger nor weaker than LRD.

4 A VNS meta-heuristic

We developed a local search meta-heuristic to determine lower bounds for the SSSP. The algo-
rithm starts from the solution provided by the 2-approximation pseudo-polynomial algorithm

55

described in Theorem 4, where the knapsack subproblems associated to rows and columns are
independently solved to optimality with the code by Ceselli et al. [2]. Then, feasibility violated
by doubly selected cells (i, j) is retrieved keeping the row-wise selection when hij < kij , the
column-wise selection otherwise; the resulting residual capacity is exploited by a greedy heuris-
tic, which iteratively identifies the unselected cell with the highest value of max (pij/hij , pij/kij)
and selects it row-wise or column-wise according to which of the two ratios dominates.

The local search procedure considers several different neighborhoods. A basic neighborhood
N1 includes all solutions obtained by selecting row-wise or column-wise a currently unselected

cell. There are at most O (mn) such solutions and all of them are improving. By N (d)
2 , we

denote the set of all solutions obtained by changing the selection of cells (i, j) and (i, j + d) or
(i, j) and (i+ d, j), where the cell indices are computed modulo n and m. This yields m + n
different neighborhoods consisting of O (mn) solutions each.

Following the VND framework, we explore each N (d)
2 neighborhood as long as it provides im-

proving solutions. Each neighborhood is explored with first-improve strategy to maximize the
search speed. The N1 neighborhood is also explored at each iteration. When a neighborhood
no longer provides better solutions, d is increased and the search is restarted.

When none of the neighborhoods proves useful, we resort to the VNS algorithm, applying
a shaking procedure that select k random cells and randomly modifies their selection status,
always respecting the capacity constraints. Then, the search starts again from the resulting
solution. At the end of each VND run, the current local optimum is compared to the best
known and the next shaking procedure restarts from the possibly updated incumbent lower
bound.

Computational tests on 336 instances of the dataset used in [3] show that both the VND
and the VNS algorithms provide near-optimal solutions (within 0.21% from optimality for the
largest instances, with 500 rows and columns) in few minutes.

References

[1] I. Abi-Zeid, O. Nilo, and L. Lamontagne. A constraint optimization approach for the
allocation of multiple search units in search and rescue operations. INFOR: Information
Systems and Operational Research, 49(1):15–30, 2011.

[2] A. Ceselli and G. Righini. A branch-and-price algorithm for the capacitated p-median
problem. Networks, 45(3):125–142, 2005.

[3] R. Cordone, F. Gandellini, and G. Righini. Solving the swath segment selection problem
through lagrangean relaxation. Computers and Operations Research, 35(3):854–862, March
2008.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York, 1979.

[5] M. Guignard. Lagrangean relaxation. Top, 11(2):151–228, December 2003.

[6] R. Knight and B. Smith. Optimal nadir observation scheduling. In Proceedings of the Fourth
International Workshop on Planning and Scheduling for Space (IWPSS 2004), Darmstadt,
Germany, June 23–25th 2004. ESA–ESOC.

56

Robust single machine scheduling with a
flexible maintenance activity

Paolo Detti1, Gaia Nicosia2, Andrea Pacifici3, and Garazi Zabalo
Manrique de Lara1

1Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche, Università di Siena, Italia
2Dipartimento di Ingegneria, Università “Roma Tre”, Italia

3Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università di Roma “Tor Vergata”, Italia

1 Introduction

In this paper we address a problem arising in a manufacturing environment where a set of
jobs must be scheduled together with the execution of a preventive maintenance activity.
In particular, we consider the so-called flexible maintenance, in which the starting time of
the maintenance task is determined in the scheduling decision process. This problem has
been introduced in [4] but in a different applicative context. Maintenance must be performed
within a given time window and its duration is uncertain and can only be estimated. Hence,
when planning the schedule of the jobs, one must determine schedules which are robust to any
possible deviations from the nominal value of the duration of the maintenance activity.

Several different versions of scheduling problems considering maintenance activities, which
are usually modelled as machine unavailability, have been addressed in the literature. For
a survey see [5]. In [7] the authors deal with the problem of scheduling a maintenance
activity, within a given time interval, minimizing total jobs’ completion time. They show
that the problem—which was proven to be NP-hard in [1]—can be optimally solved by a
dynamic program running in pseudopolynomial time and also that the SPT heuristic is a
9/7-approximation algorithm. Recently, the problem addressed in [7] has been generalized
by considering a workload-dependent maintenance period. For the latter problem, different
solution algorithms are proposed in [6]. Moreover, in [2], the authors study a similar version of
the same problem in which it is not possible to start or complete a job during the maintenance
period (while it is allowed to continue its processing).

In the last decades many authors, in several fields, have addressed robust optimization
problems in order to take care of incomplete or erroneous data through a proactive approach.
In particular, in robust discrete optimization, one usually assumes that, due to the variability
of some parameters, a set of possible scenarios is defined. The robust approach consists
in minimizing the worst case performance of a solution over all scenarios. To this purpose, a
commonly used approach is that of minimizing the maximum regret, i.e., the maximum possible
deviation of a given solution from the optimal one. In the context of single machine scheduling
problems, robustness is an important issue addressed in several papers. One of the first papers
on this topic is [3], where the authors consider two alternative measures of schedule robustness.
These measures focus on a given schedule worst-case absolute or relative deviation from the

57

optimum over all scenarios. The authors study the problem of minimizing total completion
time on a single machine, when processing times may vary in given intervals, and establish
several properties of robust schedules.

Differently from most of the robust scheduling problems addressed in the literature, here, we
consider jobs with deterministic processing times, whereas the uncertainty is only relative to
the duration of the maintenance activity. On the other hand, the objective function depends
only on the completion times of the jobs.

2 Problem statement

We assume the n jobs have processing times pj , j = 1, . . . , n. The maintenance activity
(hereafter MA) must be performed within a time interval [r, d] with given release time r and
deadline d. The MA duration may vary in a discrete set of values and its realization value
is unknown to the decision maker until the scheduling has been decided. In this context, the
problem consists in finding a schedule of the n jobs and the MA, in order to minimize the total
completion time of the jobs while processing the MA within the time interval [r, d].

We assume that the duration of the MA depends on the particular scenario s that will
be observed after the scheduling has been decided. We also assume that s belongs to a set
S of scenarios, each corresponding to a possible realization p = P (s) of the duration of the
maintenance activity.

A solution of our problem is a sequence π of jobs, only. Its value depends on π and on
the realization P (s) and it is equal to the total completion time of the jobs in the so called
realization schedule σ(π, s) which is built as follows. Given a scenario s and P (s), the MA
is processed at the latest available time so that: (1) it does not violate the given deadline d
and (2) it does not introduce any unnecessary idle time in the schedule after its release time.
The jobs of D are processed according to the sequence π. Figure 1 illustrates these concepts
through an example. More rigorously, a realization schedule can be defined as follows.

Definition 1 Given a scenario s ∈ S, the realization P (s), and a sequence π = 〈π1, π2, . . . πn〉,
let k(s) be the index of the critical job in π such that

d− pπk+1
< P (s) +

k∑

i=1

pπi ≤ d−max

{
0, r −

k∑

i=1

pπi

}

then the realization schedule σ(π, s) is obtained by scheduling the MA at the earliest possi-
ble time between jobs πk(s) and πk(s)+1. Hence, the resulting sequence of jobs in σ(π, s) is
〈π1, . . . πk(s),MA, πk(s)+1, . . . πn〉.

The value C̄(π, s) of a realization schedule σ(π, s) is the total completion time of the jobs and
it is given by

C̄(π, s) =
n∑

`=1

C` =
n∑

`=1

(∑̀

i=1

pπi

)
+ (n− k(s))


P (s) + max



0, r −

k(s)∑

i=1

pπi






 .

Observe that, since the realization of P is not known, the critical job and therefore the real-
ization schedule σ(π, s) are not known as well. Hence, a solution would merely consist in a
jobs sequence π such that—whatever MA’s duration is—the resulting schedule is satisfactory

58

1 2 3 4MA

MA 41 2 3

�(⇡, s1)

�(⇡, s2)

r = 7 d = 130 31 36

Figure 1: An example of realization schedules π =< 1, 2, 3, 4 >, where the processing times are
4, 5, 7, and 11, respectively and r = 7 d = 13. There are two scenarios and the two
corresponding values for the MA duration are P (s1) = 4 and P (s2) = 6.

in terms of jobs’ total completion time. In other words, π must be robust with respect to the
variations of the maintenance activity duration.

Usually, in an optimization problem the regret of a solution x is the difference between the
value obtained by x and that of an optimal solution. If some parameters may take several
different values (and therefore there are different optimal solutions depending on the parame-
ters’ values) it makes sense to search for a solution minimizing the worst-case regret (i.e., the
maximum value of the regret over all possible scenarios). Such a solution is called the minimax
worst-case absolute regret solution. The scenario under which the maximum regret is realized
is denoted as worst-case absolute deviation scenario. Here, we address the worst-case absolute
deviation problem which can be formulated as follows.

Robust Single Machine Scheduling with Flexible Maintenance Activity (RSMP):
Given: jobs processing times pj , j = 1, . . . , n, a set S of discrete scenarios;
Find : a jobs sequence π such that : the resulting schedule minimizes the worst-case
absolute regret ρ(π) = maxs∈S C̄(π, s)− C̄∗(s), where C̄∗(s) is the minimum total
completion time value in scenario s.

In the literature many authors, besides the minimax worst-case absolute regret, consider also
other measures of robustness (see, for instance, [3] in which the authors introduce a sort of
“normalized” figure, denoted as worst-case relative regret).

3 Main results

Hereafter, we concisely list the main contributions of this work.

• In [1], it is shown that the deterministic (i.e., single-scenario) version of RSMP is NP-hard
if r > 0, that is, the following result holds:

Remark 2 RSMP is NP-hard for any fixed number |S| ≥ 1 of scenarios.

• However even our robust version of the problem becomes easy if there is no release date for
the maintenance activity:

Theorem 3 If the release date of the MA is r = 0, then RSMP is polynomially solvable for
any number |S| ≥ 1 of scenarios and an optimal solution is given by sequencing the jobs in
SPT order.

• When a number of scenarios are available, it comes natural to use, as a robust solution, a
sequence which is optimal in at least one scenario. This could be pursued by iteratively applying
the pseudopolynomial dynamic program proposed by [7]. Unfortunately, this approach, in
general, does not yield a solution minimizing the maximum regret:

59

Theorem 4 The optimal (robust) solution of RSMP may not correspond to the optimal solu-
tion of any of the scenarios in S.

• In [3] the authors consider the problem in which all processing times may assume values
in given intervals (and no maintenance activity exists): They show that for any sequence,
when minimizing total completion time, a worst-case absolute scenario occurs when the jobs’
processing times are all equal either to their minimum or to their maximum values. However,
it is possible to show that for RSMP this property does not hold:

Theorem 5 There exist an instance I of RSMP and sequence π of the D jobs such that the
maximum regret scenario does not correspond to an extreme value of the MA duration P .

• As shown in [7], if r > 0, SPT is a 9/7-approximation algorithm for the deterministic coun-
terpart of RSMP. This approximation ratio holds even when considering the robust version of
the same problem, for some robustness measures such as the minimax regret when considering
the worst-case relative deviation as a measure of regret. Unfortunately, this positive result
does not extend to the case of minimax absolute regret objective:

Theorem 6 The approximation ratio of SPT for RSMP is unbounded.

• In addition to the above negative results, we performed a number of tests to assess the
quality of two heuristic algorithms, namely the SPT algorithm and an improved version of
the latter one in which a local search is performed. We compared the performance of these
heuristics against two mixed integer linear programs (solved by CPLEX) and show that, despite
Theorem 6, SPT may return acceptable regret values in a substantial fraction of test instances.

References

[1] Adiri I., J. Bruno, E. Frostig, A. H. G. Rinnooy Kan (1989). Single machine flow-time
scheduling with a single breakdown, Acta Informatica, 26(7), 679–696.

[2] Chen Y. , A. Zhang, Z. Tan (2013). Complexity and approximation of single machine
scheduling with an operator non-availability period to minimize total completion time,
Information Sciences 251, 150–163.

[3] Daniels R.L., P. Kouvelis (1995). Robust Scheduling to Hedge Against Processing Time
Uncertainty in Single-stage Production, Management Science, 41(2), 363–376.

[4] Detti P., G. Nicosia, A. Pacifici, G. Zabalo Manrique de Lara (2016). Robust single ma-
chine scheduling with external-party jobs, IFAC-PapersOnLine, 49 (12), pp. 1731–1736 ,
proceedings of IFAC MIM 2016, Troyes, France.

[5] Ma Y., C. Chu, C. Zuo (2010). A survey of scheduling with deterministic machine avail-
ability constraints, Computers & Industrial Engineering, 58(2), 199–211.

[6] Xu D., L. Wan, A. Liu, D. Yang (2015). Single machine total completion time scheduling
problem with workload-dependent maintenance duration, Omega 52, 101–106.

[7] Yang S., Y. Maa, D.-l. Xu, J.-b. Yang (2011). Minimizing total completion time on a
single machine with a flexible maintenance activity. Computers & Operations Research,
38, 755–770.

60

2-proper connection number of graphs

Trung Duy Doan1,2,∗, Christoph Brause1, and Ingo Schiermeyer1

1Institute of Discrete Mathematics and Algebra, TU Bergakademie Freiberg, Freiberg, Germany,
brause@math.tu-freiberg.de, ingo.schiermeyer@tu-freiberg.de

2School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, Hanoi,
Vietnam, trungdoanduy@gmail.com

A path in an edge-coloured graph is called properly coloured if every two consec-
utive edges receive distinct colours. An edge-coloured graph G is called k-properly
connected if every two vertices are connected by at least k internally pairwise vertex-
disjoint properly coloured paths. The k-proper connection number of a connected
graph G, denoted by pck(G), is the smallest number of colours that are needed in
order to make G k-properly connected. In this paper, we prove a new upper bound
for pck(G) in k-connected graphs and determine pc2(G) = 2 of several classes of
2-connected graphs.

1 Introduction

We use [4] for terminology and notation not defined here and consider simple, finite and
undirected graphs only.

The concept of proper connection of graphs is an extension of proper colouring and is moti-
vated by rainbow connection of graphs. Andrews et at. [1] and, independently, Borozan et at.
[2] introduced the concept of proper connection of graphs. A path in an edge-coloured graph
is called properly coloured if every two consecutive edges receive distinct colours. An edge-
coloured graph G is called k-properly connected if every two vertices are connected by at least
k internally pairwise vertex-disjoint properly coloured paths (for simplicity, we say k disjoint
properly coloured paths). The k-proper connection number of a connected graph G, denoted
by pck(G), is the smallest number of colours that are needed in order to make G k-properly
connected. Clearly, if G is k-properly connected, then it is also k-connected. Conversely, if G is
k-connected and properly edge-colouring, then G is k-properly connected, too. Hence, pck(G)
can be easily bounded from above by the chromatic index χ′(G), which is at most ∆(G) or
∆(G) + 1 by Vizing’s Theorem. Thus, pck(G) ≤ ∆(G) + 1 if G is k-connected. For k = 1, we
write pc(G) instead of pc1(G) and call pc(G) proper connection number of G. We note that,
as proved by Borozan et al., pc(G) = 1 if and only if G ∼= Kn [2], implying that pck(G) ≥ 2
for any k ≥ 2 and any non-complete k-connected graph G. Furthermore, it is not hard to see
that if k ≥ 2 and G is a non-complete k-connected graph, then pck(G) ≥ 2. Therefore, the
following result follows immediately.

∗Financial support by the Free State of Saxony (Landesgraduiertenstipendium) in Germany and the National
Foundation for Science and Technology Development (NAFOSTED) of Vietnam with project code 101.99-
2016.20 is thankfully acknowledged.

61

Corollary 1. If k ≥ 2 and G is a k-connected graph, then 2 ≤ pck(G) ≤ ∆(G) + 1.

We proceed with four further fundameltal results for the k-proper connection number of a
graph. Let us start with results for k = 1. If G is two connected, then we can bound the
proper connection number pc(G) from above by 3.

Theorem 2 (Borozan et at. [2]). If G is a 2-connected graph, then pc(G) ≤ 3.

Furthermore, a useful results concerning spanning subgraphs is given by Andrews et al.

Lemma 3 (Andrews et al. [1]). If G is a non-trivial connected graph and H is a connected
spanning subgraph of G, then pc(G) ≤ pc(H). In particular, pc(G) ≤ pc(T) for every spanning
tree T of G.

We generalise Lemma 3 as follows:

Lemma 4. Let k ≥ 2 and G be a k-connected graph. If H is a k-connected spanning subgraph
of G, then pck(G) ≤ pck(H).

The last restult, in our list of fundamental ones, can be easily seen by Corollary 1, and by
the observations that any cycle Cn has edge-chromatic number 2 + (n mod 2) and an odd
cycle cannot be coloured properly connected by two colours.

Fact 5. If Cn : v1v2...vn is a cycle of order n, then pc2(G) = 2 + (n mod 2).

The main aim of this this paper is to study the 2-proper connection number pc2(G) in
2-connected graphs G. By Corollary 1, ∆(G) + 1 is an upper boud for pc2(G). We can
characterise 2-connected graphs having 2-proper connection number ∆(G) + 1. Furthermore,
our next result shows further that, different from the proper connection number of a graph,
there does not exist a constant C such that pc2(G) ≤ C for all 2-connected graphs G.

Theorem 6. If G is 2-connected graph and different from an odd cycle, then pc2(G) ≤ ∆(G).
We achieve the 2-proper connection number ∆(G) + 1 if and only if G is an odd cycle.

Sketch of the Proof. For our proof of Theorem 6, we use the following two results.

Theorem 7 (Dirac [3]). If G is a minimally spanning 2-connected graph, then G is chordless.

Theorem 8 (Machado et al. [5]). If G is a chordless graph of maximum degree at least 3,
then G is ∆(G)-edge-colourable.

Trivially, if G is a cycle, then, by Fact 5, pc2(G) = 2 + (n mod 2) = ∆(G) + (n mod 2)
and we obtain the result.

If G is dictinct from a cycle and it is 2-connected graph, then ∆(G) ≥ 3. Let H be a
spanning subgraph of G which is minimally 2-connected. Now, ∆(H) ≤ ∆(G). By Theorem 7
and Theorem 8, pc2(H) ≤ ∆(H). But now, by Lemma 4, pc2(G) ≤ pc2(H). Thus,

pc2(G) ≤ χ′(H) ≤ ∆(H) ≤ ∆(G),

and we obtain the result. �

Proposition 9. For any k ≥ 2, there exist infinitly many graphs G with ∆(G) = k and
pc(G) = k.

62

2

1

2

1

2

1

3

21

3

4

1

2

1

4

Figure 1: Graph with pc2(G) = ∆(G) = 4

1 2

2 1 3 3

G1

v1 v2

v3v4

v w

G2

1

2

1

2

3

1

3

Figure 2: pc2(Gi) = 3 for i ∈ {1, 2}

The graph G depicted in Figure 1 has 2-proper connection number pc2(G) = 4 and is one
of example graphs for Proposition 9. Furthermore, let G1 and G2 be the two graphs depicted
in Figure 2. One can easily see that pc2(G) = 3 for G ∈ {G1, G2}.

By Proposition 9, there exist always 2-connected graphs having equal 2-proper connection
number pc2(G) and maximum degree ∆(G), but the difference ∆(G)−pc2(G) can be arbitrarily
large, as our next result about dense graphs will show.

Theorem 10. Let G be 2-connected graph of order n and ω(G) be the cardinality of a largest
clique in G. If

a) ω(G) = n and n ≥ 4,

b) ω(G) = n− 1, or

c) ω(G) = n− 2 and G /∈ {G1, G2},
then pc2(G) = 2.

If we consider the relation between the number of edges |E(G)| and the order n of G, then
we obtain the following result.

63

Theorem 11. Let G be a connected graph of order n ≥ 4. If |E(G)| ≥
(
n−1
2

)
+ 2, then

pc2(G) = 2.

The independence number of a graph G, denoted by α(G), is the cardinality of a largest
independent set in G.

Theorem 12. Let G be a graph of order n ≥ 4 having at least α(G) vertices of degree n− 1.
Then pc2(G) = 2

Next, we study the 2-proper connection number of the Cartesian product of two connected
graphs. Let G1�G2 be the Cartesian product of G1 and G2. Futhermore, a traceable graph is
a graph which admits a Hamiltonian path.

Theorem 13. If G1, G2 are two traceable graphs, then pc2(G1�G2) = 2.

If at least one of two graphs G1, G2 is not a traceable graph, then Theorem 13 is not
necessarily true. We obtain the following result, implying that there are infinitly many pairs
of connected graphs G1, G2 with pc2(G1�G2) > 2.

Proposition 14.

a) If K1,m is a star and Pn is a path with m,n ∈ N,m > 3, n > 2, then pc2(K1,m�Pn) = m.

b) If K1,m,K1,n are two stars with m,n ∈ N and m,n ≥ 3, then pc2(K1,m�K1,n) =
max{m,n}.

Finally, we study the relation between 2-proper connection number and proper connection
number by the following Theorem.

Theorem 15. Let G1, G2 be connected graphs with n(G1) ≥ 4 and n(G2) ≥ 2. If δ(G1) ≥ 2,
then pc2(G1�G2) ≤ pc(G1) + 1.

References

[1] E. Andrews, C. Lumduanhom, E. Laforge, and P. Zhang, On Proper-Path colourings in
Graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 97, 189-
207.

[2] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero, and Z. Tuza,
Proper connection of graphs, Discrete Math. 312(17) (2012), 2550–2560.

[3] G.A. Dirac, Minimally 2-connected graphs, J. Reine Angew. Math. 228 (1967), 204- 216.

[4] F. Harary, Graph Theory, Addison-Wesley, 1969.

[5] R.C.S. Machado, C.M.H. de Firueiredo, and N. Trotignon, Edge-colouring and total-
colouring chordless graphs, Discrete Math. 313 (2013), 1547-1552.

[6] V. G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Anal. (3) (1964)
25-30.

64

An Efficient Ear Decomposition Algorithm

Debarshi Dutta1, Kishore Kothapalli1, G. Ramakrishna 2,
Sai Charan Regunta 2, and Sai Harsh Tondomker 2

1International Institute of Information Technology, Hyderabad. India.
2Indian Institute of Information Technology Chittoor, Sri City, India.

An ear decomposition of a graph G is a partition of the edge set of G into a
sequence of edge-disjoint paths, such that only the end vertices of each path appear
in earlier paths. For a graph on n vertices and m edges, the state-of-art algorithm
for obtaining an ear decomposition by Schmidt takes O(m + n) time. We design
and implement a new algorithm to obtain an ear decomposition for a biconnected
graph, whose running time O(m+n). In practice, however, our experiments reveal
that, the proposed algorithm runs at least 2 times faster than Schmidt’s algorithm.
The speedup increases as the graph gets denser.

1 Introduction
Obtaining an ear decomposition of a graph is an important problem in the context of graph
algorithms. An ear decomposition of a graph is used in several other graph algorithms such
as testing connectivity, s-t-numbering and planarity-testing [6]. Also, an ear decomposition
has been used as a paradigm to obtain parallel algorithms for various problems. Whitney has
introduced the notion of ear decomposition to characterize biconnected graphs [7]. An ear of
a graph G is a maximal path whose internal vertices have degree 2. An ear decomposition of
a graph G = (V,E) is a partition of E into a sequence (P0, P1, · · · , Pk), such that (i) P0 is a
cycle, (ii) for each i ≥ 1, Pi is an ear of P0 ∪ . . .∪Pi. An ear decomposition (P0, P1, . . . , Pk) of
G is an open ear decomposition if the end points of all the ears Pi, i ≥ 1, are distinct.
Past Work. The concept of ear decomposition is very well studied both structurally and algo-
rithmically. An ear decomposition is used to characterize biconnected graphs [7]. Further, the
notion of nested ear decomposition and nice ear decompositions are developed to characterize
series-parallel graphs and polygonal 2-trees, respectively [2, 5]. For a graph on n vertices and
m edges, algorithms to obtain an ear decomposition in O(m + n) time are known for a long
time. Lovász has designed an algorithm for the first time to obtain an ear decomposition in
parallel framework [4]. The state-of-art serial algorithm to construct an ear decomposition is
proposed by Schmidt [6]. His algorithm is based on depth first search spanning tree and is
simpler to visualize. The algorithm of Schmidt also runs in time 4m+O(n).
Motivation and Our Contribution. To the best of our knowledge, there are no studies on
computing ear decomposition from a practical perspective in serial computing. The state of art
algorithm by Schmidt is simple and elegant [6]. However, this algorithm has not been explored
in practice. The main objective of this work is to obtain an ear decomposition algorithm that
works well both in theory and practice. In this paper, we present an O(m+ n) algorithm that
offers an improvement to the algorithm of Schmidt in the practical setting. In particular, we

65

show that, a large number of edges of a graph are redundant in the process of obtaining an ear
decomposition. Removing such redundant edges in a prior pre-processing step can often result
in practical improvement. Our characterization of redundant edges (trivial ear) is based on a
similar notion that is identified in the context of biconnectivity [1]. In practice, our algorithm
runs at least 2 times faster than Schmidt’s algorithm on graphs having Ω(n log n) edges.

2 Algorithm for Ear Decomposition
We use standard graph terminology from [7]. For a graph G, let n = |V (G)| and m = |E(G)|
denote the number of vertices and edges in G, respectively. A graph is biconnected (2-vertex
connected) if it does not contain a cut-vertex. An edge e in a biconnected graph is non-
essential if the graph remains biconnected after the removal of e. For i ≥ 2, an ear Pi in an
ear decomposition is a trivial ear, if the number of edges in Pi is one. In the rest of the paper,
G denotes an unweighted and undirected biconnected graph.

The main idea in Schmidt’s algorithm for computing an ear decomposition is to obtain a depth
first search tree T and process all the non-tree edges (edges in G− T) to construct m− n+ 1
ears. The time required to perform these two steps is 4m + O(n), where at most 2m + O(n)
is required in the individual steps.

Algorithm 1 shows an overview of our approach to compute an ear decomposition. At a higher-
level, the main idea in our approach is to filter many non-essential edges and compute an ear
decomposition on the rest of the graph.

Algorithm 1: An algorithm to find an ear decomposition of a biconnected graph G

1 Construct a breadth first search (bfs) spanning tree T of G ;
2 Construct a spanning forest F from G′, where G′ = G− T ;
3 Find an ear-decomposition P of T ∪ F using Schmidt’s algorithm ;
4 return the sequence of ears in P and the edges in G′′ as trivial ears, where G′′ = G′−F ;

The proof of correctness of Algorithm 1 is shown in Theorem 3, using Lemma 1 and Lemma 2.
Lemma 1 ([7]). A graph G is biconnected (2-vertex connected) if and only if G has an open
ear decomposition.
Lemma 2 ([1]). Let T be a bfs spanning tree of G and F be a spanning forest in G − T .
Then, the edges of each connected component of G−T are in one biconnected component. The
number of biconnected components in G and T ∪ F is same.
Theorem 3. For a biconnected graph G, let T be a bfs-spanning tree of G and F be a spanning
forest in G−T . Then there is an ear decomposition P of G in which every edge in G− (T ∪F)
is a trivial ear.

Proof. From Lemma 2, T ∪ F is biconnected. Then, by Lemma 1, there is an open ear
decomposition P ′ of T ∪ F . As a result, P ′ with each edge in G− (T ∪ F) being a trivial ear,
becomes an open ear decomposition of G with the mentioned property.

In Algorithm 1, Line 1 and Line 3 take 2m + O(n) time and O(n) time, respectively. Con-
structing a spanning forest F from G−T efficiently in Line 2 is a more involved task. If we use
breadth first or depth first traversals, then Line 2 consumes 2m+O(n) time, the total running
time is 4m+O(n). This matches with Schmidt’s algorithm, and hence this is not a promising
idea. If we use disjoint-set-forest datastructure with union-by-rank and path-compression, the
Line 2 consumes mα(n) +O(n) time, the total run time is 2m+ α(n)m+O(n). A linked-list

66

based disjoint-set data-structure requires m + O(n log n) time to compute the task in Line 2.
However, as the data-locality is very poor in linked-lists, our experiments reveal that this idea
does not beat Schmidt’s algorithm in practice.

To make our idea work, we introduce a randomized algorithm Algorithm 2, shown below for
the implementation of Line 2 in Algorithm 1.

Algorithm 2: Algorithm to implement Line 2 in Algorithm 1

1 X = {v ∈ V (G) | degree(v) in T = degree(v) in G}, F = ∅ ;
2 for each vertex u ∈ V (G)−X do

3 append each edge incident at u to F with probability logn
n ;

The key idea in the randomized algorithm is to choose a sparse spanning connected subgraph
of G − X, instead of a spanning forest of G. For each vertex u ∈ V (G), each edge incident
at u is sampled with probability logn

n and all the sampled edges in the random process form
a spanning connected subgraph of G −X. This insight is inferred from our experiments and
support the correctness of Algorithm 2. Let the number of vertices and edges in the input
graph H be n vertices and Ω(n log n) edges, respectively. If H ′ is a spanning subgraph of H
that is constructed by sampling each edge of H with probability logn

n , then we claim that H ′

is connected with high probability. The proof of this claim is open and Lemma 4 would be
helpful to derive the proof. The expected number of edges in F is in O(n log n). If we assume
that each edge can be sampled in constant time, then Algorithm 2 runs in m+O(n log n) time,
and hence the run time of Algorithm 1 is 3m+O(n log n). This run time is further reduced to
2m + O(n log n) time in next section. Since m is Ω(n log n), our algorithm runs in O(m + n)
time. However, our algorithm performs well in practice as m increases beyond Ω(n log n).
Lemma 4. [3] A random graph G(n, p) on n vertices and edge probability p is connected with
very high probability, if p = lnn

n .

3 Implementation Details and Experiments

In this section, we describe the lower level details of our algorithm. Without loss of gener-
ality, let us assume that the vertices in the input graph are numbered from 1 to n. We use
the compressed sparse row (csr) representation to store the input graph and as well as the
intermediate graphs. A csr of a graph G consists of two arrays, namely a vertex array V []
and an edge array E[]. For each i, 1 ≤ i ≤ n, V [i] denotes an index in E[] such that all the
neighbors of i are stored in E[] at locations V [i], . . . , V [i+ 1]− 1.

We recall the construction of spanning forest F in Algorithm 2. Each edge incident at a vertex
u is sampled with probability logn

n . Then, the expected number of edges in F that are incident
on u for a dense graph is at most log n. In practice, this step consumes more time as every edge
needs to be processed. One way to perform this step is as follows. For sampling k edges that
are incident on a vertex i, we first choose k random indices whose range is V [i], . . . , V [i+1]−1,
and move these edges from G to F . If the number of edges incident at a vertex are less than
k, then we move all of them from G to F . The run-time of Algorithm 2 as per this idea is
O(n log n), and thus the run-time of our main algorithm is 2m + O(n log n). The edges that
are not sampled from csr of G will be remained as trivial ears.

67

1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

Density (m/n)

S
p
ee
d
U
p

n = 5, 000
n = 7, 500
n = 10, 000
n = 12, 500
n = 15, 000

Figure 1: Density Vs SpeedUp

1,500 2,000 2,500 3,000 3,500 4,000 4,500

200

400

600

800

1,000

1,200

Density (m/n)

R
u
n
n
in
g
T
im
e(
m
s)

OurAlgorithm for n = 12.5k

Our Algorithm for n = 15k

Schmidt′s Algorithm for n = 12.5k

Schmidt′s Algorithm for n = 15k

Figure 2: Schmidt’s Vs Our Algorithm

Experimental Results

We implement our algorithms in C using gcc 4.8.5 compiler. We use Intel(R) Xeon(R) CPU
E5-2650 v3 processor, which is based on x86 64 architecture. The frequency of the processor
that we use in our experiments is 2.30GHz. The details on the number of vertices (n) and
density (m/n) of the graphs considered in our experiments, which are constructed using GT-
generator, are given in the left-side figure shown below. Our experiments reveal that the
speedup is proportionate to the density of a graph. In other words, as the density of a graph
increases, the speedup of our algorithm increases further and this is shown in Figure 1. The
run-time of our algorithm against Schmidt’s algorithm for n = 15K and n = 12.5K, and for
various densities are shown in Figure 2. In our experiments, the runtime plot against the
density for n = 5K, n = 7.5K and n = 10K follow the similar trend shown in Figure 2. We
conclude that, our algorithm runs at least 2 times faster than Schmidt’s algorithm in practice.

Remark. Our algorithm can be used to obtain an approximated minimal biconnected graph.
Finding the trade off between the quality of the solution and runtime by our algorithm against
the state-of-art approximation algorithms to find a minimal biconnected graph is an interesting
study.

References

[1] G. Cong and D. A. Bader. An experimental study of parallel biconnected components
algorithms on symmetric multiprocessors (smps). Inter. Par. and Dist. Proc. Symp., 2005.

[2] D. Eppstein. Parallel recognition of series-parallel graphs. Inf. Comput., 98(1):41–55, 1992.
[3] P. Erdős and A Rényi. On the evolution of random graphs. Publ. Math. Inst. Hungar.

Acad. Sci, pages 17–61, 1960.
[4] L. Lovász. Computing ears and branchings in parallel. Found. of Comp. Sci, 464–467,

1985.
[5] N.S. Narayanaswamy and G. Ramakrishna. On minimum average stretch spanning trees

in polygonal 2-trees. Theor. Comput. Sci., 575(C):56–70, 2015.
[6] J. M. Schmidt. A simple test on 2-vertex- and 2-edge-connectivity. Info. Proc. Lett.,

113(7):241–244, 2013.
[7] Douglas B. West. Introduction to graph theory - second edition. Prentice Hall, 2001.

68

Parity Polytopes and Binarization

Dominik Ermel1 and Matthias Walter2

1Otto-von-Guericke-Universitt Magdeburg, dominik.ermel@st.ovgu.de
2RWTH Aachen University, walter@or.rwth-aachen.de

1 Introduction

The term binarization refers to techniques to reformulate mixed-integer linear programs by re-
placing general integer (bounded) variables by sets of binary variables. Roy compared several
approaches with the goal to separate strong cutting planes in the reformulation and project it
back [5]. Recently, Bonami and Margot continued this line of work using simple split disjunc-
tions of rank 1 and 2 to generate cutting planes [2]. The strongest bounds were obtained by a
binarization in which an integer variable z ∈ {0, 1, . . . , n} is replaced by the sum of n binary
variables x1, . . . , xn, and symmetry-breaking constraints

1 ≥ x1 ≥ . . . ≥ xn ≥ 0 (1)

are added. We denote by Xn
ord the set of ordered binary vectors x ∈ {0, 1}n satisfying (1) and

by Pnord their convex hull. Note that Inequalities (1) already describe Pnord. We call the vectors
in Xn

ord ordered binary vectors.
We consider the strong binarization in combination with parity constraints on the affected

integer variables. For this we define the ordered even parity polytope for a vector r ∈ Nk as

P reven := conv{(x(1), . . . , x(k)) ∈ Xr1
ord × . . .×X

rk
ord |

k∑

i=1

ri∑

j=1

x
(i)
j even}.

The integer points in P reven are precisely those binary vectors of length n := r1 + . . .+ rk whose
entry-wise sum is even and which are ordered within each of the groups defined by r. In the
special case of r = 1n (the all-ones vector), P reven is the even parity polytope, which has the
following outer description [3] (with [n] := {1, 2, . . . , n}):

P 1n
even = {x ∈ [0, 1]n |

∑

i∈[n]\F
xi +

∑

i∈F
(1− xi) ≥ 1 for all F ⊆ [n] with |F | odd} (2)

Outline. We start by providing a complete outer description for P reven in the original space and
establishing separation results. Section 3 is dedicated to an application in which binarization is
applied to an integer programming model for the graphic traveling salesman problem. During
computations for this model we observed that the corresponding parity constraints did not
improve the dual relaxation value. In Section 4 we provide a theoretical explanation of this
effect.

69

2 Outer Description and Separation Algorithms

We begin with the simple observation that for ordered binary vectors, parity can be measured
using a linear function. For n ∈ N we define f : Pnord → R via f(x) :=

∑n
i=1(−1)i−1xi. By

bounding xi − xi+1 ≥ 0 for all even (resp. odd) indices, we obtain that f maps Pnord into [0, 1].
Thus, for x ∈ Xn

ord, the value f(x) is binary, and it is easy to check that f(x) = 1 holds if
and only if x has an odd number of 1’s. Note that we will use f for different values of n, and
assume that it is clear from the context. We can now state our main results.

Theorem 1. Let r ∈ Nk. The ordered even parity polytope P reven is equal to the set of points
(x(1), . . . , x(k)) ∈ P r1ord × . . .× P

rk
ord that satisfy the inequalities
∑

i∈[k]\F
f(x(i)) +

∑

i∈F
(1− f(x(i))) ≥ 1 (3)

for all F ⊆ [k] with |F | odd.

Theorem 2. Let r ∈ Nk and let x̂ = (x̂(1), . . . , x̂(k)) ∈ P r1ord × . . . × P
rk
ord. We can decide in

linear time if x̂ ∈ P reven holds, and if this is not the case, obtain an odd set F ⊆ [k] whose
associated Inequality (3) is violated by x̂.

Similar results hold for ordered odd polytopes, defined for r ∈ Nk:

P rodd := conv{(x(1), . . . , x(k)) ∈ Xr1
ord × . . .×X

rk
ord |

k∑

i=1

ri∑

j=1

x
(i)
j odd}.

Corollary 3. The ordered odd parity polytope for r ∈ Nk is the set of (x(1), . . . , x(k)) ∈ P r1ord ×
. . .× P rkord that satisfy Inequalities (3) for all F ⊆ [k] with |F | even.

Corollary 4. Let r ∈ Nk and let x̂ = (x̂(1), . . . , x̂(k)) ∈ P r1ord × . . . × P
rk
ord. We can decide in

linear time if x̂ ∈ P rodd holds, and if this is not the case, obtain an even set F ⊆ [k] whose
associated Inequality (3) is violated by x̂.

3 Strengthened Blossom Inequalities for the Graphic TSP

As an application, we consider the graphic traveling salesman problem (GTSP), defined as
follows. The input consists of an undirected graph G = (V,E), and the goal is to find a
minimum-length closed walk in G that visits every node at least once. Recently, Sebő and
Vygen developed a 7/5-approximation algorithm for this problem [6]. When modeling it as an
integer program (IP) one has different options. The first is based on the observation that the
problem is equivalent to the traveling salesman problem on the complete graph with |V | nodes
and edge weights c ∈ RE+ where cu,v is equal to the (combinatorial) distance from u to v in G.

This model has
(|V |

2

)
binary variables which is much greater than |E| if G is sparse.

In order to model the problem with fewer variables we can start with the IP

min
∑

e∈E
ze (4)

s.t. z(δ(S)) ≥ 2 for all ∅ 6= S $ V (5)

ze ≥ 0 for all e ∈ E (6)

ze ∈ Z for all e ∈ E, (7)

70

where by δ(·) we denote the cut-sets. The solutions to this problem correspond to the 2-edge-
connected spanning subgraphs of G. Since not every such subgraph is a closed walk, this
IP does not model the GTSP. The necessary additional requirement is the parity condition
z(δ(v)) ∈ 2Z for every v ∈ V . Such a constraint cannot be modeled directly, i.e., by adding
linear inequalities. To obtain a correct model, one may add integer variables yv = 1

2z(δ(v))
for every v ∈ V . Unfortunately, this does not contribute to the strength of the LP relaxation
since relaxing yv’s integrality constraints essentially makes them redundant.

It is well-known that an optimum solution will never use an edge more than twice (otherwise
we can decrease the value by 2 and obtain a better feasible solution). Hence we can restrict
ze to the set {0, 1, 2} which allows us to perform binarization, i.e., to replace, for every e ∈ E,

the variable ze by x
(1)
e + x

(2)
e with x

(1)
e , x

(2)
e ∈ {0, 1}. This again leads to the same strength

of the LP relaxation, but now allows us to enforce parity constraints: since every closed walk
traverses each cut δ(S) an even number of times, the following inequalities are valid for every
S ⊆ V and every F ⊆ δ(S)× {0, 1} with |F | odd.

∑

(e,i)∈(δ(S)×{0,1})\F
x(i)e +

∑

(e,i)∈F
(1− x(i)e) ≥ 1 (8)

If we identify the variables x
(1)
e and x

(2)
e with the doubled edges of G, then these inequalities are

the well-known Blossom Inequalities. For the TSP problem they model that every Hamiltonian
cycle is also a perfect 2-matching.

Strengthened Constraints. To break the symmetry of x
(1)
e and x

(2)
e we add x

(1)
e ≥ x

(2)
e for

each edge e ∈ E, and can further strengthen the inequalities using Theorem 1. Inequality

∑

e∈δ(S)\F
(x(1)e − x(2)e) +

∑

e∈F
(1− x(1)e + x(2)e) ≥ 1 (9)

is valid for every S ⊆ V and every F ⊆ δ(S) and dominates (8). We can separate both
constraints, (8) and (9) using the algorithm of Letchford et al. [4], making use of Theorem 2.

4 Strength of the Relaxation

We carried out computational experiments on the GTSP, and it turned out that the lower
bound obtained by the linear relaxation (4)–(6) was never improved by binarization of the
variables and addition of (strengthened) parity constraints. In fact, in the root node many
(strengthened) Blossom Inequalities were added, but with no effect on the dual objective.

We investigated this effect, and observed the following weakness of the approach of binariza-
tion and addition of parity constraints. The decisive property of our model is that only parity

constraints actually use the binarization variables x
(i)
e : all other variables consider the original

variables ze (or, equivalently, the sum of the binarization variables x
(i)
e).

In a more abstract setting we consider arbitrary (integer) variables z1, . . . , zk with domains

zi ∈ [0, rk] ∩ Z for all i ∈ [k], and apply binarization, i.e., introduce variables x
(i)
j ∈ P riord and

linking constraints zi =
∑ri

j=1 x
(i)
j for each i ∈ [k]. We can assume that further (arbitrary)

constraints that link the z-variables are also present.
Now consider a parity constraint on (a subset of) the z-variables, which is of course stated

in terms of the corresponding x-variables. Suppose we have a certain fractional relaxation

71

solution (ẑ, x̂) that may violate this parity constraint, but satisfies all other constraints. Our
result in this section states that under mild conditions we can modify the x-variables such that

the linking constraints are still satisfied (i.e., that the sums
∑ri

j=1 x̂
(i)
j remain constant) and

such that parity constraints are satisfied.
For this we define the function γ(z) := min(z, r − z, 12) for a variable z ∈ [0, r].

Theorem 5. Let r ∈ Nk and let z ∈ [0, r1]× . . .× [0, rk]. Let I be a family of subsets I ⊆ [k].

If every I ∈ I satisfies
∑

i∈I γ(zi) ≥ 1, then there exist x(i) ∈ P riord with zi =
∑ri

j=1 x
(i)
j for all

i ∈ [k] such that for every I ∈ I the vector (x(i))i∈I is contained in the even and odd parity
polytopes corresponding to (ri)i∈I .

The theorem essentially states sufficient conditions for the case that after binarization and
enforcing of several parity constraints, the values of the original variables remain feasible. Note
that in order to satisfy

∑
i∈I γ(zi) ≥ 1 for a constraint on variable set I, it suffices that two

of the participating variables have a distance to their respective bounds of at least 1
2 , which is

not very restrictive for nonbinary variables.

Implications for the Graphic TSP. We consider an optimum solutiuon ẑ ∈ [0, 2]E of the
LP relaxation (4)–(6) of the model introduced in Section 3. The requirements for Theorem 5
are satisfied if and only if for every nontrivial cut δ(S) (S $ V , S 6= ∅), the inequality∑

e∈δ(S) γ(ẑe) ≥ 1 is satisfied. This is in particular the case if every cut contains two edges

e, f with 1
2 ≤ ẑe, ẑf ≤ 3

2 . Note that integrality of the z-variables does not play a role here, i.e.,
even if ẑ is integral, and ẑ(δ(S)) has the wrong parity for some set S, then there may exist a
(fractional) assignment for x-variables that is feasible for Constraints (9). For the IP model
this means that the Blossom Inequalities only become useful if relevant z-variables are near
their bounds or if branching or cutting restricted the x-variables further.

Acknowledgements. We thank the author of the lrs software [1] that we used to compute
complete descriptions for ordered parity polytopes of small dimensions. Furthermore, we thank
Stefan Weltge and Volker Kaibel for valuable discussions.

References

[1] David Avis. A Revised Implementation of the Reverse Search Vertex Enumeration Algo-
rithm, pages 177–198. Birkhäuser Basel, 2000. ISBN 978-3-0348-8438-9.

[2] Pierre Bonami and François Margot. Cut Generation through Binarization, pages 174–185.
Springer International Publishing, 2014. ISBN 978-3-319-07557-0.

[3] Robert Jeroslow. On defining sets of vertices of the hypercube by linear inequalities.
Discrete Mathematics, 11(2):119–124, 1975.

[4] Adam N. Letchford, Gerhard Reinelt, and Dirk Oliver Theis. Odd minimum cut sets and
b-matchings revisited. SIAM Journal on Discrete Mathematics, 22(4):1480–1487, 2008.

[5] Jean-Sébastien Roy. “Binarize and Project” to generate cuts for general mixed-integer
programs. Algorithmic Operations Research, 2(1):37–51, 2007.

[6] András Sebő and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-
TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica,
pages 1–34, 2014. ISSN 1439-6912.

72

The Transportation Problem with Con�icts

Annette M.C. Ficker1, Frits C.R. Spieksma1, and Gerhard J. Woeginger2

1KU Leuven
2RWTH Aachen

1 Introduction

In the classical Transportation Problem we are given suppliers, each having a supply, and
locations, each having a demand. For all possible combinations of supplier and location we are
given a unit transportation cost. The goal is to ful�ll the demand with minimum cost. This
problem is well-known and e�ciently solvable.

Many situations in practice have, as a base, this transportation problem. However, additional
properties are often present. To illustrate this, consider a setting described in [5], where patients
(suppliers) have to be allocated to hospital rooms (locations), with the additional constraint
that each room should only contain patients of the same gender. We call a pair of patients with
di�erent gender a forbidden pair, and further, we call the set of forbidden pairs the con�ict set.
This example gives rise to the so-called Red-Blue Transportation problem.
Another example, see [1], comes from storage management where containers (suppliers) need

to be placed in rows of a storage yard (locations), such that costs of operations (search, load) is
minimized. Some containers are not allowed to be placed in the same row, due to their content
or size. Again, two containers that cannot be placed in the same row are called a forbidden
pair, and the set of forbidden pairs for a particular row form its con�ict set. The resulting
situation gives rise to the Transportation Problem with Exclusionary Side Constraints.
Our last example comes from [2], where companies (suppliers) want to promote their products

to potential customers (locations). On the one hand, a customer wants to limit the number
of promotions received from similar companies, inducing forbidden pairs of companies for each
customer. On the other hand, companies want to geographically spread their promotion and
therefore limit the number of promotions to customers living close to each other, inducing
forbidden pairs of customers. This problem is called the Con�ict-aware weighted Bipartite
b-matching problem.

The Transportation Problem with Con�icts (TPC) generalizes all the problems mentioned
above, by extending the input of the classical transportation problem with a con�ict set for
each supplier and each location.

Problem statement

In the Transportation Problem with Con�icts (TPC) we are given a bipartite graph (S∪D,E),
where (see also Figure 1):

73

S: is the set of supply nodes (suppliers), with for each i ∈ S,
• a supply si ∈ N, and
• a con�ict set Ci, i.e., a collection of pairs of demand nodes.

D: is the set of demand nodes (locations), with for each j ∈ D,

• a demand dj ∈ N, and
• a con�ict set Fj , i.e., a collection of pairs of supply nodes.

E: is the edge set (not necessarily complete), with for each edge (i, j) ∈ E (i ∈ S and j ∈ D),

• a capacity uij ∈ N, and
• a weight wij ∈ N.

t ∈ N: is the threshold for the number of allowed con�icts to occur in an assignment.

1

s1

2

s2

3

s3

4

s4

5

d5

6

d6

7

d7

8

d8

S D

C1 = ∅

C2 = {(5, 6), (6, 7)}

C3 = {(7, 8)}

C4 = ∅

F5 = {(1, 2)}

F6 = {(2, 3)}

F7 = {(1, 3), (2, 3), (2, 4)}

F8 = {(2, 3)}

Figure 1: Transportation Problem with Con�icts

Similar to the classical Transportation Problem we assume that
∑

i∈S si =
∑

j∈D dj . A
solution is an integral assignment xij ∈ N indicating for each edge (i, j) ∈ E, how much supply
is sent from supply node i ∈ S to demand node j ∈ D. The value of an assignment equals∑

i∈S
∑

j∈D wij · xij .
We say that demand (supply) constraints are ful�lled if for all j ∈ D,

∑
i∈S xij = dj (for

all i ∈ S, ∑j∈S xij = si). We say that demand (supply) constraints are respected if for all
j ∈ D,

∑
i∈S xij ≤ dj (for all i ∈ S,

∑
j∈S xij ≤ si).

Given a solution x, we say that a con�ict occurs if xij1 > 0 and xij2 > 0, while (j1, j2) ∈ Ci.
Likewise, a con�ict occurs if xi1j > 0 and xi2j > 0, while (i1, i2) ∈ Fj . An assignment x is not
feasible when more than t con�icts occur or when xij > uij for an edge (i, j) ∈ E.
We consider two problems,
i) Find a feasible assignment ful�lling all demand and supply constraints, while minimizing

total cost (min-TPC), and
ii) Find a feasible assignment respecting all demand and supply constraints, while minimizing

total cost (max-TPC).

74

Con�ict graphs

We analyze the TPC, and special cases of the TPC, by investigating possible structures within
the con�ict set. We build a con�ict graph for each location as follows: there is a node for each
supplier adjacent to the location and two nodes are connected if and only if the corresponding
suppliers constitute a forbidden pair. A similar procedure is used to build a con�ict graph for
each supplier. For example, see Figures 2 & 3 for the con�ict graphs of C1 and F7 from Figure
1.

C1 = ∅

5

7

Figure 2: Con�ict Graph GC1

F7 = {(1, 3), (2, 3), (2, 4)}

1 2

3 4

Figure 3: Con�ict Graph GF7

Notation

We discuss several special cases of TPC and use a four-�eld notation to systematize the di�erent
special cases of TPC: TPC(α, β, χ, δ).

De�nition 1. TPC(α, β, χ, δ) is a special case of TPC where:

α ∈ {Ci, C, ∅} describes the nature of the con�ict sets of the supply nodes; the three symbols

stand for:

Ci: arbitrary con�ict sets, i.e. each supply node i ∈ S has a con�ict set,

C: identical con�ict sets, i.e. each supply node i ∈ S has con�ict set C,

∅: no con�ict between demand nodes, i.e. each supply node i ∈ S has an empty con�ict

set;

β ∈ {Fj , F, F
B, ∅} describes the nature of the con�ict sets of the demand nodes; the four symbols

stand for:

Fj: arbitrary con�ict sets, i.e. each demand node j ∈ D has a con�ict set,

F : identical con�ict sets, i.e. each demand node j ∈ D has con�ict set C,

FB: identical con�ict sets, and its induced con�ict graph GF is complete Bipartite,

∅: no con�ict between supply nodes, i.e. each demand node j ∈ D has an empty con�ict

set;

χ ∈ {uij ,∞, 1} describes the nature of the edge capacities; the three symbols stand for:

uij: arbitrary capacities,

∞: uncapacitated, or equivalently uij ≥ min{si, dj},
1: uij = 1, for every edge (i, j) ∈ E,

δ ∈ {t, 0} describes the nature of the threshold; the two symbols stand for:

t: arbitrary threshold, i.e. part of the input,

0: no con�icts are allowed.

75

Our results

Note that when threshold t = 0, then, in a feasible assignment, the suppliers i ∈ S assigned to
a location j ∈ D (i.e. those i ∈ S with xij > 0) form an independent set in the con�ict graph
of that location j ∈ D. Indeed, since apparently none of the suppliers assigned are in con�ict,
there is no edge connecting them in the con�ict graph.
Since �nding a maximum independent set is di�cult, so is solving an instance of TPC with

threshold t = 0. However, there are graph classes for which independent set is easy, polynomial
solvable. Therefore we have complexity results based on these graph classes and approximation
results depending on the approximation factor for �nding an independent set for each location.

We show that:

(i) TPC(∅, F,∞, 0) remains NP-hard, even if F is a bipartite graph, or an interval graph or
a planar graph,

(ii) TPC(∅, F, uij , 0) remains NP-hard, even if F is a simple path (tree) or a matching (forest),

(iii) TPC(∅, FB,∞, 0) remains NP-hard, even if supply si = 1 for each supply node i ∈ S and
all demand dj = 2 for each demand node j ∈ D (thereby settling a case left open in [5]),

(iv) TPC(∅, Fj ,∞, 0) remains NP-hard, even with bounded degree 6.

Regarding approximation, suppose we have a βj-approximation for �nding a MWIS, containing
at most dj nodes, in the con�ict graph GFj induced by Fj for each j ∈ D.
Let β = maxj∈D βj , then by using results in [3] we obtain a β(1 − 1/e)-approximation

algorithm for max-TPC(∅, Fj ,∞, 0) with supply si = 1 for each supply node i ∈ S.

References

[1] Cao, B. (1992). Transportation problem with nonlinear side constraints a branch and bound
approach. Zeitschrift für Operations Research, 36(2):185�197.

[2] Chen, C., Zheng, L., Srinivasan, V., Thomo, A., Wu, K., and Sukow, A. (2016). Con�ict-
aware weighted bipartite b-matching and its application to e-commerce. IEEE Transactions

on Knowledge and Data Engineering, 28(6):1475�1488, June 2016.

[3] Fleischer, L., Goemans, M. X., Mirrokni, V. S., and Sviridenko, M. (2011). Tight approxi-
mation algorithms for maximum separable assignment problems. Mathematics of Operations

Research, 36(3):416�431.

[4] Goossens, D. R. and Spieksma, F. C. R. (2009). The transportation problem with exclu-
sionary side constraints. 4OR, 7(1):51�60.

[5] Vancroonenburg, W., Della Croce, F., Goossens, D., and Spieksma, F. C. R. (2014). The
red blue transportation problem. European Journal of Operational Research, 237(3):814 �
823.

76

A 3/2-Approximation Algorithm for Tree
Augmentation via Chvàtal-Gomory Cuts

Samuel Fiorini1

1Université libre de Bruxelles

There are two main ingredients in this talk: (i) the weighted tree augmentation problem
(WTAP), a fundamental network design problem, for which one can derive a factor-2 approxi-
mation algorithm in many different ways from known results, but at the same time no existing
technique is currently permitting to go beyond factor-2; (ii) Chvátal-Gomory cuts, a general
technique to strengthen LP relaxations, that seems to have been rarely if not never successfully
used in approximation algorithms.

In the WTAP, we are given an undirected tree G, an additional set of edges called links and
costs on the links. The goal is to choose a minimum cost subset of links such that adding them
to G yields a 2-edge-connected graph.

The unweighted version of WTAP, known as the tree augmentation problem (TAP), is already
APX-hard. That problem has attracted a lot of attention, and has seen an abundance of
results, most of them technically involved. The best result so far is the combinatorial 3/2-
approximation algorithm of Kortsarz and Nutov (TALG ’16). In order to address some issues
with the correctness of this last paper, Cheriyan and Gao (arXiv ’15) recently derived an
SDP-based 3/2 + ε-approximation algorithm.

For WTAP, virtually no progress was made, until Adjiashvili (SODA ’17) found a LP-based
1.9642-approximation algorithm in the case all weights are between 1 and some constant M .
This work brought a slick new decomposition tool to the problem.

In my talk, I will explain how to combine Adjiashvili’s decomposition, a stronger LP obtained
after one round of {0, 1/2}-Chvátal-Gomory cuts, and seminal work by Edmonds and Johnson
on matching in bidirected graphs, and obtain a 3/2 + ε-approximation for WTAP under the
bounded weights assumption. This is the current best result on WTAP, but at the same time
the less technical.

Joint work with Martin Groß, Jochen Könemann, Laura Sanità (Waterloo).

77

78

Distances between bicliques and structural
properties of bicliques in graphs

Marina Groshaus1 and Leandro Montero2

1Departamento de Computación. Universidad de Buenos Aires. Buenos Aires, Argentina,
groshaus@dc.uba.ar

2Interdisciplinary Centre for Security, Reliability and Trust. Université de Luxembourg. L-2721,
Luxembourg, leandro.montero@uni.lu

A biclique is a maximal bipartite complete induced subgraph of G. The biclique
graph of a graph G, denoted by KB(G), is the intersection graph of the family of
all bicliques of G. In this work we first define the distance between bicliques in
a graph. We give a useful formula that relates the distance between bicliques in
a graph G and the distance between their respectives vertices in KB(G). Using
it, we prove several results about the structure of bicliques in graphs and biclique
graphs.

1 Introduction

The biclique graph of a graph G, denoted by KB(G), is the intersection graph of the family
of all bicliques of G. It was defined and characterized in [3]. However, no polynomial time
algorithm is known for recognizing biclique graphs. Bicliques have applications in various
fields, for example, biology: protein-protein interaction networks [2], social networks: web
community discovery [4], genetics [1], medicine [5], etc.

In this work, we first define the distance between bicliques in a graph. We give a formula that
relates the distance between bicliques in a graph G and the distance between their respectives
vertices in KB(G). This is an important tool for proving some results on bicliques in graphs.
In particular, given two bicliques, we show the existence of more bicliques between them. Also,
we give a different (and easier) proof of the necessity theorem for a graph to be a biclique graph
stated in [3]. Finally, we prove that the condition of that theorem is not sufficient.

Along the paper we restrict to undirected simple graphs. Let G = (V,E) be a graph with
vertex set V (G) and edge set E(G). A biclique is a maximal bipartite complete induced
subgraph of G. We assume that all graphs in this paper are connected. Given a family of sets
H, the intersection graph of H is a graph that has the members of H as vertices, and there is
an edge between two sets E,F ∈ H when E and F have non-empty intersection. A graph G
is an intersection graph if there exists a family of sets H such that G is the intersection graph
of H.

Theorem 1 ([3]). Let G be a graph such that G = KB(H), for some graph H, then every
induced P3 of G is contained in an induced diamond or an induced gem of G (Fig 1).

79

Figure 1: Induced P3 in bold edges contained in a diamond and in a gem respectively

One natural question that arises from Theorem 1 is if this is also sufficient, that is, if it holds
that a graph G is a biclique graph if and only if every induced P3 is contained in an induced
diamond or in an induced gem. We will show that this is not the case, by proving a result
that gives us many graphs with that property that are not biclique graphs.

2 Distances in G and KB(G)

In this section we define the distance between bicliques in a graph. Also, we study the relation
between the distance of bicliques in a graph G and the distance between their respective vertices
in KB(G).

Definition 2. Let G be a graph and let B,B′ be bicliques of G. We define the distance between
B and B′ as d(B,B′) = min{d(b, b′) / b ∈ B, b′ ∈ B′}.

The next lemma is important for giving an easier proof of Theorem 1 and also for proving
that its condition it is not sufficient.

Lemma 3. Let G be a graph and let B,B′ be bicliques of G. Then

dKB(G)(B,B′) =
⌊dG(B,B′)+1

2

⌋
+ 1.

Now, based on the distance between two bicliques of a graph G we can assure the existence
of other bicliques between them.

Lemma 4. Let G be a graph and let B,B′ be bicliques of G such that dG(B,B′) = 1, then there
exist at least two more bicliques in G such that they are intersecting and they also intersect
with B and B′.

The following result is a generalization of Lemma 4.

Theorem 5. Let G be a graph and let B,B′ be bicliques of G such that dG(B,B′) = k > 1,
then there exist at least k + 1 bicliques in G such that they are at distance at most k − 1 to
each of B and B′.

Proof. Let v0 ∈ B and vk ∈ B′ be vertices such that dG(v0, vk) = dG(B,B′) = k. Then, there
exists a path P = v0v1 . . . vk of length k between B and B′ (in fact between v0 and vk). Clearly
vi is not adjacent to vj for 0 ≤ i < j ≤ k and j 6= i + 1, otherwise a shortest path would exist
between B and B′. Then, each triple {vi, vi+1, vi+2} is contained in a different biclique of G
for i = 0, . . . , k − 2. Therefore we obtain k − 1 bicliques that are at distance at most k − 1 to
each of B and B′. We obtain the two remaining bicliques as follows. As B is a biclique, there
exists a vertex x ∈ B such that xv0 ∈ E(G). If xv1 /∈ E(G), then {x, v0, v1} is contained in a
biclique of G different from B. Now if xv1 ∈ E(G) then {x, v1, v2} is contained in a biclique

80

of G different from B. It is worth to mention that xvi /∈ E(G) for i ≥ 2, otherwise a path of
length less than k would exist between B and B′. Finally, we obtain the remaining biclique in
the same way taking a vertex y ∈ B′ such that yvk ∈ E(G).

Now we give the proof of Theorem 1 based on distances between bicliques.

Proof of Theorem 1. Let uvw be an induced P3 in G and let U , V and W be the bicliques
of H associated to the vertices u, v and w of G. As dG(u,w) = 2, by Lemma 3 we have
dH(U,W) = 2 or dH(U,W) = 1.

• Case dH(U,W) = 2. Therefore, there is no edge between bicliques U and W . Now as V
intersects with U and with W we have that V contains a P3 = {a, b, c} such that a ∈ U
and c ∈W . Since dH(U,W) = 2 and the path joining U and W uses the edges in V , we
have by Theorem 5 that there are three bicliques between U and W in H. Furthermore,
one of these bicliques is V . Let Z1 and Z2 be the other two bicliques in H and z1 and
z2 their associated vertices in G. Following the proof of Theorem 5, we can see that Z1

intersects with U, V and Z2, and Z2 intersects with V,W and Z1. Now, depending on the
intersection between U,Z2 and W,Z1 we conclude that either {u, v, w, z2}, {u, v, w, z1}
induce a diamond in G or {u, v, w, z1, z2} induces a gem in G, that contains the P3.

• Case dH(U,W) = 1. Therefore, there exists an edge e between U and W . Now, if
there is any of these edges such that {e} ∩ V 6= ∅, then by Lemma 4, there are two
intersecting bicliques (at least one of them must contain e) between U and W that also
intersect U and W . If V is one of these two (if not, V intersects at least one of them
since {e} ∩ V 6= ∅), calling Z the biclique different from V , we have that {u, v, w, z} is
an induced diamond that contains the P3 in G. Finally, for every edge e between U and
W , {e} ∩ V = ∅. Therefore, V contains a P3 with one endpoint in U and the other in
W . Now, as no edge between U and W intersects with V , using the edges in that P3 in
V , we obtain the same conclusion as in the first case.

Finally we show that there exist many graphs having every induced P3 contained in an
induced diamond of G that are not biclique graphs. That is, the condition of Theorem 1 is
not sufficient. We recall that for a vertex v of G, N(v) is the set of vertices adjacent to it.

Proposition 6. Let G = KB(H) for some graph H where G 6= diamond. Then, there do not
exist v1, v2 ∈ V (G) such that N(v1) = N(v2) = K2.

Proof (Sketch) Suppose that there exist v1, v2 ∈ V (G) such that N(v1) = N(v2) = K2.
Then, dG(v1, v2) = 2 and therefore, if B is the biclique of H that corresponds to v1 and B′ is
the biclique of H that corresponds to v2, by Lemma 3, dH(B,B′) = 2 or dH(B,B′) = 1. We
show only the first case since the second one is similar, applying first Lemma 4.

• Case dH(B,B′) = 2. Now, H must contain a subgraph as depicted in Figure 2. We will
show that we arrive to a contradiction.

Suppose first that one of both dotted edges does not exist, say vy. Then {v, x, y} is
contained in a biclique that does not intersect B′. This is a contradiction since N(v1) =
N(v2) in G. Suppose next that both dotted edges vy and vy′ exist. Now in H there are at
least four bicliques that intersect with B and B′. We obtain one for each choice of {x, y}
in B, {x′, y′} in B′ and v. Then K2 6= K4 ⊆ N(v1) = N(v2) which is a contradiction.

81

H

B B'
vx x'

y y'

Figure 2: Graph H when dH(B,B′) = 2.

Figure 3 shows some examples of graphs having every P3 in a diamond that are not biclique
graphs.

Figure 3: Examples of graphs that are not biclique graphs

Proposition 6 can be extended leading to the following conjecture.

Conjecture 7. Let G = KB(H) for some graph H where G 6= diamond. Then, there does
not exist v1, v2, . . . , vi ∈ V (G) such that N(v1) = N(v2) = . . . = N(vi) ⊆ Ki for i ≥ 2.

Using Conjecture 7, we could prove the following one.

Conjecture 8. Let G = KB(H) for some graph H. Then, G has a Hamiltonian cycle.

References

[1] G. Atluri, J. Bellay, G. Pandey, C. Myers, and V. Kumar. Discovering coherent value
bicliques in genetic interaction data. In Proceedings of 9th International Workshop on
Data Mining in Bioinformatics (BIOKDD’10), 2000.

[2] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun, L. Ling, N. Zhang, G. Li,
and R. Chen. Topological structure analysis of the protein-protein interaction network in
budding yeast. Nucleic Acids Research, 31(9):2443–2450, 2003.

[3] M. Groshaus and J. L. Szwarcfiter. Biclique graphs and biclique matrices. J. Graph Theory,
63(1):1–16, 2010.

[4] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web for emerging
cyber-communities. In Proceeding of the 8th international conference on World Wide Web,
pages 14811493, 1999., 2000.

[5] N. Nagarajan and C. Kingsford. Uncovering genomic reassortments among influenza strains
by enumerating maximal bicliques. 2012 IEEE International Conference on Bioinformatics
and Biomedicine, 0:223–230, 2008.

82

Determination of Large Sparse Derivative
Matrices: Structural Orthogonality and

Structural Degeneracy

Shahadat Hossain1 and Ashraful Huq Suny2

1,2University of Lethbridge

We consider the problem of minimum cardinality column partitioning that arise
in the determination of large and sparse/structured matrices of mathematical deriva-
tives. We present an effective approach whereby a special submatrix or core is
identified and partitioned. The partition is then extended to the entire matrix.
Results from computational experiments are highly encouraging. We establish, for
the first time, optimal partition for a set of test instances.

1 Introduction

Numerical methods for solving problems in nonlinear optimization and differential equations
often require the evaluation of mathematical derivatives or sensitivities of some objective. In
this paper we consider the determination of Jacobian matrix F ′(x) of a once continuously
differentiable mapping F : Rn 7→ Rm at a given point x ∈ Rn. The product of the Jacobian
matrix with a vector s may be approximated as

∂F (x+ ts)

∂t

∣∣∣∣
t=0

= F ′(x)s ≡ As ≈ 1

ε
[F (x+ εs)− F (x)] ≡ b, (1)

with one evaluation of F at (x+ εs) assuming F (x) has already been computed, where ε > 0
is a small increment. If the function is available as a computer program then the techniques
of algorithmic (or Automatic) Differentiation (AD) [5] can be applied to compute b = F ′(x)s
accurate up to the machine round-off, at a cost which is a small multiple of the cost of one
function evaluation. The evaluation of the Jacobian at a given point can therefore be achieved
as matrix-vector products along some judiciously chosen directions s. If F ′(x) is dense then
one can set s to the Cartesian basis vectors ei, i = 1, . . . , n to obtain matrix A with n products
As. When the Jacobian has many entries that vanish identically, it is possible to exploit
such information to reduce the computational cost. The key observation is to approximate
a group of columns in each product by utilizing sparsity. Columns j and l are structurally
orthogonal, written A(:, j) ⊥ A(:, l), if there does not exist index i such that aij 6= 0 and
ail 6= 0. Columns j and l are structurally dependent, written A(:, j) 6⊥ A(:, l), if they are not
structurally orthogonal. For A(:, j) ⊥ A(:, l), we have

A(:, j) +A(:, l) ≈ 1

ε
[F (x+ ε(ej + el))− F (x)], (2)

83

such that the nonzero unknowns in columns j and l are determined from the product b =
As, s = ej + el directly. With a priori known sparsity pattern of a sparse matrix our goal is
to partition its columns into smallest number of structurally orthogonal groups such that the
nonzero unknowns can be determined directly.

Obtain vectors sj ∈ Rn, j = 1, . . . , p where p is minimized such that the products
bj = Asj , j = 1, . . . , p or B = AS determine the matrix A directly.

Determining a sparse Jacobian matrix by exploiting sparsity as in (2) is due to Curtis, Powell,
and Reid [1] (henceforth the CPR method). Coleman and Moré [2] further analyze the column
partitioning problem and formally show that the problem of finding a minimum cardinality
column partitioning consistent with direct determination is equivalent to a vertex coloring
problem of an associated graph and that the problem is NP-Hard.

2 Matrix Partitioning and Degeneracy

The sparsity pattern of a matrix A ∈ Rm×n is denoted

S(A) = {(i, j)|aij 6= 0}

where aij is the entry in row i and column j. We also use colon notation of [4] to denote
submatrices; column j and row i of matrixA areA(:, j) andA(i, :), respectively. More generally,
for I ⊂ {1, . . . ,m} and J ⊂ {1, . . . , n}, A(I,J) denotes the submatrix of A consisting of rows
and columns (whose indices are) in I and J , respectively. Note that sparsity pattern of a
matrix is invariant under column permutations in the sense that a column permutation alters
only the labeling. The set of neighbors of column j in the submatrix induced by columns J ,
is defined as

NJ (A(:, j)) = {A(:, l), l ∈ J | l 6= j, A(:, j) 6⊥ A(:, l)} .
In other words, neighbors of A(:, j) are A(:, l), l ∈ J that are structurally dependent on A(:, j).
The degree (of dependency) of column j is the number of neighbors of A(:, j) and is denoted
by dJ (A(j, :)) = |NJ (A(:, j))|. For brevity and when there is no ambiguity we use simplified
notations: NJ (j) ≡ NJ (A(:, j)), dJ (j) ≡ dJ (A(j, :)). The minimum degree (of dependency)
in the submatrix induced by columns J is defined as

δJ = min {dJ (j)|j ∈ J } .

It has been shown that direct determination where the number of matrix-vector products
minimized is NP-hard [2, 7]. If there is an effective procedure for finding mutually dependent
columns of largest cardinality then these columns can be trivially partitioned and the partition
can be extended to include the remaining columns. Unfortunately, no such effective procedure
exists for finding a maximum dependent set of columns [7].

Let ρi denote the number of nonzero entries in row i of matrix A. Then ρ = maxi ρi, i =
1, . . . ,m is a lower bound on the number of groups in a structurally orthogonal column parti-
tion. However, such a bound can be arbitrarily poor [6]. In our work, we consider a relaxation
of mutual structural dependency of the columns. Specifically, we are interested in finding the
largest submatrix A′ induced by columns J of matrix A such that

• δJ is maximum over all induced submatrices of A,

84

• J is computationally easy to find.

The submatrix A′ is termed structural δ-core of columns of matrix A and δ ≡ maxJ⊂{1,...,n} δJ
is the structural column degeneracy (or degeneracy for short) of matrix A. It can be shown
that the columns of A′ can be partitioned into δJ + 1 structurally orthogonal groups and that
for each column j not in A′ there is a column group of A′ such that column j is structurally
orthogonal to the columns in that group. Thus, matrix A also has a δJ + 1 structurally
orthogonal partition. Moreover, an algorithm for finding a “good” structurally orthogonal
partition of columns of A can be specified by finding a minimum partition of the columns of A′

and then extending the partition to matrix A. Borrowing ideas from [11] we give an efficient
linear-time algorithm for identifying structural δ-core of columns of a sparse matrix A. The
algorithm proceeds by identifying a column with minimum degree at each step. We illustrate
this algorithm using an example. The left part of Figure 1 displays a sparse matrix; the table
on the right demonstrates the algorithm for structural for finding δ-core.




× × ×
× × ×

× ×
× ×

× ×
× ×

× ×
× ×
× ×




Step J j δJ
0 {1, . . . , 9} 6 2
1 {1, . . . , 5, 7, . . . , 9} 8 1
2 {1, . . . , 5, 7, 9} 1 1
3 {2 . . . , 5, 7, 9} 7 1
4 {2, . . . , 5, 9} 5 1
5 {2, 3, 4, 9} 3 3
6 {2, 4, 9} 9 2
7 {2, 4} 2 1
8 {4} 0

Figure 1: Core decomposition of a sparse matrix

Columns {1, 5, 6, 7, 8} each has degree 2 and the remaining columns are of degree 3. We
arbitrarily pick column 6. Removing column 6 reduces the degree of columns 7 and 8 by one.
The degree of other columns is not affected. Let the next minimum degree column be column
number 7. The table in Figure 1 depicts the minimum degree column (j) that is picked at
each step. At step 5, we are left with submatrix consisting of columns 2, 3, 4 and 9. It can be
directly verified that the columns 2, 3, 4 and 9 constitute the maximum cardinality structurally
dependent set of columns for matrix A which is also the structural δ-core for δ = 3. The
concepts of degeneracy and core are well-known in graph theory [10]. While the algorithm
that we have described above has an equivalent interpretation in terms of graphs [11], it is to
be emphasized that in a computer implementation a sparse matrix is preferable as many of
the combinatorial tasks can be expressed as fundamental sparse matrix kernel operation such
as sparse matrix-vector multiplication or sparse matrix-matrix multiplication [6].

3 Numerical Experiments

In this section we provide preliminary numerical test results on test instances drawn from
MatrixMarket collection. In Table 1 labels of the columns are as follows: n denotes the

85

Table 1: Number of matrix-vector products in direct determination

Matrix n ρ δ |J | DSJM BB CM

cage11 39082 31 141 832 62 56∗ 60
cage12 130228 33 162 1710 68 61∗ 65
fidap002 441 125 129 275 125 125 125
fidap003 1821 62 65 482 62 54 62
fidap005 27 15 14 21 15 15 15
fidap015 6867 18 25 4482 22 18 18
fidap018 5773 18 25 2710 22 18 18
fidap022 839 62 70 155 64 62 64
fidap029 2870 9 12 2643 12 9 9
fidap031 3909 75 107 2322 93 90∗ 90
fidap033 1733 18 23 1054 21 18 18
fidap035 19716 18 25 7252 22 18 18
fidapm05 42 21 20 30 21 21 21

number of columns in the matrix, ρ denotes the maximum number of nonzero entries in any
row, δ denotes the degeneracy, and J denotes structural δ-core. Each matrix is partitioned
using a heuristic in the software package DSJM [9]; the number of group in the structurally
orthogonal partition is reported in column labeled DSJM. We apply Brélaz’s exact coloring
algorithm, a branch-and-bound method, on the structural δ-core; the resulting partition is
reported in column BB. In our combined method, reported under column CM, we first find a
structurally orthogonal partition of the structural δ-core using the exact method BB and then
extend the partition using a greedy approach. Each column that is not in the core is included
in the least numbered structurally orthogonal column group. The numbers in bold represent
improvement or new information. On cage11 , cage12 , and fidap031 the exact algorithms does
not terminate. However, we are still able to use the partitioning information and extend it to
the entire matrix. The resulting partition is better than the one computed by DSJM. Also, for
a vast majority of test instances the exact algorithm does not terminate when applied to the
entire matrix. We can verify the optimality of partitions from the values ρ, δ, BB, and CM.
On problems fidap029 , fidap033 , fidap035 , we have equality of lower bound (ρ) and upper
bound (CM). Therefore, the CM partition is minimum.

4 Concluding Remarks

We have presented a new approach that uses a partial structurally orthogonal column partition
obtained by applying an exact procedure on a much smaller submatrix and then extending the
partial partition to the entire matrix. Except for small test instances determining minimum
structurally orthogonal column partition is impractical. Using our approach we are able to
determine and verify optimal partition of a number of test instances for the first time. The
full version of the paper will include relevant theory and elaborate test results.

Acknowledgement. This research is supported in part by Natural Sciences and Engineering
Research Council of Canada (NSERC) Discovery Grant (Individual).

86

References

[1] Curtis, A. R., Powell, M. J. D., Reid, J. K.: On the Estimation of Sparse Jacobian
Matrices. IMA J. Appl. Math. 13(1), 117–119 (1974)

[2] Coleman, T. F., Moré J. J.: Estimation of Sparse Jacobian Matrices and Graph Coloring
Problems. SIAM J. Numer. Anal. 20(1), 187–209 (1983)

[3] Golub, G. H. and Van Loan, C. F.: Matrix Computations (3rd Ed.). Johns Hopkins
University Press, Baltimore, MD, USA (1996)

[4] Griewank, A. and Walther, A.: Evaluating Derivatives: Principles and Techniques of Al-
gorithmic Differentiation (Second Ed.). Soc. for Industrial and Applied Math., Philadel-
phia, PA, USA. (2008)

[5] Hossain, S., Steihaug, T.,: Graph models and their efficient implementation for sparse
Jacobian matrix determination. Discrete Appl. Math. 161(2), 1747–1754 (2013)

[6] S. Hossain and T. Steihaug. Optimal direct determination of sparse Jacobian matrices.
Optimization Methods and Software, 28(6):1218–1232, 2013.

[7] Daniel Brélaz. New methods to color the vertices of a graph. Communications of the
ACM, 22(4):251–256, 1979.

[8] Mahmudul Hasan, Shahadat Hossain, Ahamad Imtiaz Khan, Nasrin Hakim Mithila, and
Ashraful Huq Suny. DSJM: a software toolkit for direct determination of sparse Jacobian
matrices. In Proceedings of the 5th International Conference on Mathematical Software,
ICMS, volume 9725 of LNCS, pages 275–283, Berlin,Germany, 2016. Springer.

[9] Don R Lick and Arthur T White. k-Degenerate graphs. Canadian J. of Mathematics,
22:1082–1096, 1970.

[10] David W Matula and Leland L Beck. Smallest-last ordering and clustering and graph
coloring algorithms. Journal of the ACM (JACM), 30(3):417–427, 1983.

87

88

Computing kernels in graphs with a
clique-cutset

Ayumi Igarashi1, Frédéric Meunier2, and Adèle Pass-Lanneau2

1University of Oxford, Department of Computer Science
2Université Paris Est, CERMICS (ENPC)

In a directed graph, a kernel is a subset of the vertices that is both independent
and absorbing. Not all directed graphs have a kernel, and finding classes of graphs
having always a kernel or for which deciding the existence of a kernel is polynomial
has been the topic of many works in graph theory. We formalize some techniques
to build a kernel in a graph with a clique-cutset, knowing kernels in the pieces
with respect to the clique-cutset. As a consequence, we obtain for instance that
computing a kernel in a clique-acyclic orientation of a chordal graph can be done in
polynomial time. We enlighten some consequences in the theory of hedonic games.

1 Introduction

A subset S of the vertices of a directed graph is independent if no two vertices in S are adjacent,
and absorbing if for any vertex u not in S, there is a vertex v ∈ S such that the arc (u, v)
exists in the graph. A kernel is a subset of vertices that is both independent and absorbing.
Kernels have been introduced in 1944 by Von Neumann and Morgenstern [15] as a tool for
studying positional or Nim-type games. Since then, other applications in game theory have
been found [3, Sections 7 and 8]. They also play a role in graph theory: they are for instance
at the heart of Galvin’s proof of Dinitz’s conjecture on list coloring [8].

A directed graph such that every induced subgraph has a kernel is kernel-perfect. Identifying
classes of kernel-perfect graphs has been the motivation of many works, see the bibliography
in [3]. A clique-cutset of a directed graph D = (V,A) is a subset C ⊆ V such that C induces
a clique in D and D[V \ C] is disconnected. For each connected component B of D[V \ C],
the directed graph induced by B ∪ C is a piece of D with respect to C. Jacob [11] proved
that if every piece with respect to some clique-cutset C is kernel-perfect, so is D. Jacob’s
theorem has been one of the main tools used by Maffray for proving his result about kernels in
i-triangulated graphs [12]. We prove the following lemma, which strengthens Jacob’s theorem
and adds to it an algorithmic flavor.

Lemma 1. Let C be a clique-cutset of a digraph D = (V,A) and B,B′ a bipartition of V \ C
such that B ∪ C is a piece of D with respect to C. Suppose that there exist subsets of vertices

K(i) such that K(i) is a kernel of D
[
B ∪

(
C \⋃i−1

j=1K
(j)
)]

for every i ∈ {1, . . . , |C|+ 1} and
such that D

[
B′ ∪

(
C ∩⋃|C|j=1K

(j)
)]

has a kernel K. Then there exists i ∈ {1, . . . , |C| + 1}
such that K ∪K(i) is a kernel of D.

89

This lemma implies in particular that, if B ∪ C and B′ ∪ C induce kernel-perfect graphs,
then D is kernel-perfect as well. We can then see that Lemma 1 implies Jacob’s theorem by
applying it recursively on the directed graph induced by B′ ∪ C. It is worth noting that the
proof of our lemma is much shorter than the proof Jacob gave for his theorem. We provide
the full proof at the end of this extended abstract.

In a graph class closed under taking induced subgraphs, the atoms are the graphs that have
no clique-cutset. According to Jacob’s theorem, if the atoms of such a class are kernel-perfect,
so are all graphs in the class. The following theorem, proved almost directly from Lemma 1,
ensures that if kernels are polynomially computable in the atoms of this class and in their in-
duced subgraphs, then they are polynomially computable on the whole class. Deciding whether
a directed graph has a kernel or is kernel-perfect are NP-complete problems [1, 4]. Moreover,
not so many classes of kernel-perfect graphs with polynomial algorithms for computing kernels
are known.

Theorem 2. Consider a class of directed graphs closed under taking induced subgraphs. Sup-
pose that there is a polynomial algorithm that, for any induced subgraph of an atom, computes
a kernel when it exists. Then there is a polynomial algorithm that, given any digraph D of the
class, returns either a kernel of D, or an induced subgraph of D with no kernel.

If every directed graph in the class is kernel-perfect, then the algorithm computes in polyno-
mial time a kernel. However, if there are directed graphs in the class that are not kernel-perfect,
the algorithm may fail to find a kernel, even if one exists, but it outputs then a certificate of
non kernel-perfectness.

Orientations of chordal graphs form a graph class satisfying the condition of the theorem
(see Section 2). It does not seem to have been known that a kernel can be found in polynomial
time in kernel-perfect orientations of chordal graphs. We emphasize that, while the proof given
by Jacob for his theorem is constructive and combines kernels of the pieces, we have not been
able to adapt it to get a polynomial algorithm for chordal graphs or any graph class satisfying
Theorem 2. Yet, there are families of interval graphs on which the straightforward application
of the implicit algorithm in the latter proof is exponential.

2 Clique-acyclic orientations of perfect graphs

An arc (u, v) in a directed graph is reversible if the arc (v, u) exists, and irreversible otherwise.
An orientation of an undirected graph G is a directed graph obtained by orienting each edge
either in one direction or both ways. A suborientation is an orientation in which every edge in
oriented in only one direction (there are no reversible arcs in a suborientation). An orientation
is clique-acyclic if in every clique the subgraph of irreversible arcs is acyclic, or, equivalently,
if every clique has a vertex absorbing all other vertices in the clique.

One of the main results on kernel-perfect graphs is a theorem by Boros and Gurvich [2],
originally conjectured by Berge and Duchet in 1980, stating that every clique-acyclic orientation
of a perfect graph has a kernel. An intriguing feature of their proof and of the subsequent
proofs is that none of them provides an efficient method to compute a kernel. The complexity
of this problem is an open question [9]. There are only few subclasses of perfect graphs for
which the problem is known to be polynomial, e.g., bipartite graphs or line-graphs of bipartite
graphs (via the Gale-Shapley algorithm for stable marriages [7, 13]). Theorem 2 allows to add
to this list chordal and DE graphs. DE graphs, or “directed edge path graphs”, introduced

90

by Monma and Wei [14], are defined as the intersection graphs of families of directed paths in
directed trees (where two paths intersect if they share an arc). The atoms of chordal graphs
(resp. DE graphs) are cliques (resp. line-graphs of bipartite graphs) and they satisfy thus the
condition of Theorem 2.

Corollary 3. The problem of computing a kernel in a clique-acyclic orientation of a chordal
graph is polynomial.

Corollary 4. The problem of computing a kernel in a clique-acyclic orientation of a DE graph
is polynomial.

The complexity of kernel computation seems to be simpler when limited to suborientations.
For instance, the polynomiality of finding a kernel is an easy exercise in the case of clique-acyclic
suborientations of chordal graphs and was already known for clique-acyclic suborientations of
DE graphs [5]. The following result also goes in that direction. A circular-arc graph is the
intersection graph of intervals on a circle.

Proposition 5. There is a polynomial algorithm that decides if a clique-acyclic suborientation
of a circular-arc graph has a kernel and computes such a kernel when it exists.

3 An application to hedonic games

A hedonic game with graph structure [10] is a triple (N, (�i)i∈N , L) where N is a finite set of
players, each �i is a complete and transitive preference relation over the subsets including i,
and L is a set of pairs of players. A subset of players is a feasible coalition if they induce a
connected subgraph of (N,L), seen as a graph. A partition π of N into feasible coalitions is
core stable if, for every feasible coalition S, there exists a player i ∈ S who weakly prefers his
current coalition π(i) to S, i.e., π(i) �i S.

One can associate core stable partitions with kernels as follows. Let FL be the set of all
feasible coalitions. Consider the directed graph (FL, A) where (S, T) ∈ A if there exists a
player i ∈ S ∩ T with T �i S. The core stable partitions of a hedonic game are precisely the
kernels of (FL, A). Demange [6, Theorem 2, p.767] proved that finding a core stable partition
when (N,L) is a tree can be done in polynomial time in the number of feasible coalitions. Since
the intersection graphs of subtrees of a tree (where intersecting here means sharing a common
vertex) are exactly the chordal graphs, Corollary 3 strengthens Demange’s result to the more
general hedonic game where FL is restricted to some predetermined subfamily F of subsets of
players.

4 Proof of Lemma 1

To ease the notation, let us define X(i) := C∩⋃i−1
j=1K

(j). The sequence (X(i))i=1,2,... of subsets
of C is nondecreasing (for inclusion). There is thus an index k ∈ {1, . . . , |C| + 1} such that
X(k) = X(k+1). Since K(k) is a kernel of D[B ∪ (C \X(k))], we have K(k) ∩C ⊆ C \X(k). The
equality X(k) = X(k+1) implies that K(k) ∩ C ⊆ X(k). Hence, K(k) ∩ C = ∅.

Assume that D[B′ ∪X(|C|+1)] has a kernel K. Suppose first that K and C have an empty
intersection. Since C is a clique-cutset, the set K ∪ K(k) is independent. The vertices in
B ∪ (C \X(k)) being absorbed by K(k) and those of B′ ∪X(k) being absorbed by K, we get
that K ∪K(k) is a kernel of D.

91

Suppose then that K and C have a nonempty intersection. Denote by v a vertex in K ∩
X(|C|+1). By definition of X(|C|+1), there is an index ` ∈ {1, . . . , |C| + 1} such that v ∈ K(`).
Since C is a clique-cutset, the set K ∪K(`) is independent in D. The vertices in B ∪ (C \X(`))
being absorbed by K(`) and those of B′∪X(`) by K, we get that K ∪K(`) is a kernel of D.

References

[1] S.D. Andres and W. Hochstättler. Perfect digraphs. Journal of Graph Theory, 79:21–29,
2014.

[2] E. Boros and V. Gurvich. Perfect graphs are kernel solvable. Discrete Mathematics,
159:35–55, 1996.

[3] E. Boros and V. Gurvich. Perfects graphs, kernels, and cores of cooperative games.
Discrete Mathematics, 306:2336–2354, 2006.

[4] V. Chvátal. On the computational complexity of finding a kernel. Technical Report
CRM300, Centre de Recherches Mathématiques, Université de Montréal, 1973.

[5] O. Durand de Gevigney, F. Meunier, C. Popa, J. Reygner, and A. Romero. Solving
coloring, minimum clique cover and kernel problems on arc intersection graphs of directed
paths on a tree. 4OR, 9:175–88, 2011.

[6] G. Demange. On group stability in hierarchies and networks. Journal of Political Economy,
112(4):754–778, 2004.

[7] D. Gale and L.S. Shapley. College Admissions and the Stability of Marriage. The American
Mathematical Monthly, 69:9–15, 1962.

[8] F. Galvin. The list chromatic index of a bipartite multigraph. Journal of Combinatorial
Theory, Series B, 63:153–158, 1995.

[9] Egerváry Research Group. Egres open, finding kernels in special digraphs. http://lemon.
cs.elte.hu/egres/open/Findingkernelsinspecialdigraphs.

[10] A. Igarashi and E. Elkind. Hedonic games with graph-restricted communication. In
Proceedings of the 15th International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2016, pages 242–250, 2016.

[11] H. Jacob. Kernels in graphs with a clique-cutset. Discrete Mathematics, 156:265–267,
1996.

[12] F. Maffray. On kernels in i-triangulated graphs. Discrete Mathematics, 61:247–251, 1986.

[13] F. Maffray. Kernels in perfect line-graphs. Journal of Combinatorial Theory, Series B,
55:1–8, 1992.

[14] C.L. Monma and V.K. Wei. Intersection graphs of paths in a tree. Journal of Combina-
torial Theory, Series B, 41:141–181, 1986.

[15] O. Morgenstern and J. von Neumann. Theory of Games and Economic Behavior. Prince-
ton University Press, 1944.

92

Submodular Secretary Problems:
Cardinality, Matching, and Linear

Constraints

Thomas Kesselheim∗1 and Andreas Tönnis †2

1Max-Planck-Institut für Informatik and Saarland University, Saarbrücken Informatics Campus,
Germany., thomas.kesselheim@mpi-inf.mpg.de.

2Universität Bonn, Bonn, Germany., atoennis@uni-bonn.de.

1 Introduction

In the classic secretary problem, one is presented a sequence of items with different scores
online in random order. Upon arrival of an item, one has to decide immediately and irrevocably
whether to accept or to reject the current item. The objective is to accept the best of these
items. Recently, combinatorial generalizations of this problem have attracted attention. In
these settings, feasibility of solutions are stated in terms of matroid or linear constraints. In
most cases, these combinatorial generalizations consider linear objective functions. This way,
the profit gained by the decision in one step is independent of the other steps.

In this paper, we consider general monotone submodular functions1. For example, the sub-
modular secretary problem, independently introduced by Bateni et al. [1] and Gupta et al. [3],
is an online variant of monotone submodular maximization subject to cardinality constraints.
In this problem, we are allowed to select up to k items from a set of n items. The value of
a set is represented by a monotone, submodular function. Now, stated as an online problem,
items arrive one after the other and every item can only be selected right at the moment when
it arrives. The values of the submodular function are only known on subsets of the items that
have already arrived. The objective function is designed by an adversary, but the order of the
items is uniformly at random.

We call an algorithm c-competitive if for any objective function v chosen by the adversary,
the set of selected items ALG satisfies E [v(ALG)] ≥ (c−o(1)) ·v(OPT), where OPT is a size-k
subset of items that maximizes v.

Previous algorithms for submodular secretary problems were designed by modifying offline
approximation algorithms for submodular objectives so that they could be used in the online
environment. We take a different approach. Our algorithms are inspired by algorithms for

∗Supported in part by the DFG through Cluster of Excellence MMCI.
†Work was done while this author was at RWTH Aachen University, supported by the DFG GRK/1298
“AlgoSyn”.

1A function f : 2U → R for given ground set U is called submodular if for all S ⊆ T ⊆ U and every x ∈ U\T
holds f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T).

93

linear objective functions. We repeatedly solve the respective offline optimization problem and
use this outcome as a guide to make decisions in the current round. Generally, it is enough
to only compute approximate solutions. Our results nicely separate the loss due to the on-
line nature and due to limited computational power. Using polynomial-time computations
and existing offline algorithms, we significantly outperform existing online algorithms. Certain
submodular functions or kinds of constraints allow better approximations, which immediately
transfer to even better competitive ratios. This is, for example, true for submodular maxi-
mization subject to a cardinality constraint if the number of allowed items is constant. Also, if
computational complexity is no concern like in classical competitive analysis, our competitive
ratios become even better.

2 Algorithmic Ideas and Results

Our new algorithm for the submodular secretary problem [4] follows the following natural
paradigm. We reject the first n

e items. Afterwards, for each arriving item, we run an α-
approximation algorithm A for the offline optimization problem on the part of the instance
that we have seen so far. If the current item is included in this solution and we have not yet
accepted too many items, we accept it. Otherwise, we reject it. In our work, we treat the
offline approximation as a black-box.

Drop the first dpne − 1 items;
for item j arriving in round ` ≥ dpne do // online steps ` = dpne to n

Set U≤` := U≤`−1 ∪ {j};
Let S(`) = A(U≤`); // black box α-approximation

if j ∈ S(`) then // tentative allocation

if |Accepted| < k then // feasibility test

Add j to Accepted; // online allocation

end

end

end
Algorithm 1: Submodular secretary problem

Given an α-approximate algorithm for monotone submodular maximization subject to a car-

dinality constraint, we present an α
e

(
1−

√
k−1

(k+1)
√
2π

)
-competitive algorithm for the submodular

secretary problem. That is, we achieve a competitive ratio of at least 0.31α for any k ≥ 2.
Asymptotically for large k, we reach α

e . Again, if computational complexity is no concern,
then we can use the optimal offline solution in every iteration. In this case, we have α = 1. In
comparison, the previously best algorithm is e−1

e2+e
≈ 0.170-competitive [2].

For the analysis, we bound the expected value obtained by the algorithm recursively. It
then remains to solve the recursion and to bound the resulting term. Generally, the recursive
approach can be used for any secretary problems with cardinality constraints. It could be of
independent interest, especially because it allows to obtain very good bounds also for rather
small values of k.

One option for the black-box offline algorithm is the standard greedy algorithm by Nemhauser
and Wolsey [6]. It always picks the item of maximum marginal increase until it has picked
k items. Generally, this algorithm is 1 − 1

e -approximate. However, it is known that if one

94

compares to the best solution with only k ≤ k items the approximation factor improves to
1− exp

(
−k
k

)
. We exploit this fact to give a better analysis of our online algorithm when using

the greedy algorithm in each step. We show that the algorithm is 0.238-competitive for any k
and asymptotically for large k it is 0.275-competitive.

Additionally, we consider the submodular secretary matching problem. In this problem, one
side of a bipartite graphs arrives online in random order. Upon arrival, vertices are either
matched to a free vertex on the offline side or rejected. The objective is a submodular function
on the set of matched pairs or edges. It is easy to see that the submodular secretary problem is
a special case of this more general problem. Fortunately, similar algorithmic ideas work here as
well. Again, we combine a sampling phase with a black box for the offline problem and get an
0.207α-competitive algorithm. Here the best previously known algorithm is 1

95 -competitive [5].
Finally, we show how our new analysis technique can be used to generalize previous results

on linear packing programs towards submodular maximization with packing constraints. Here,
we use a typical continuous extension towards the expectation on the submodular objective.
We parameterize our results in d, the column sparsity of the constraint matrix, and B, the

minimal capacity of the constraints. We achieve a competitive ratio of Ω(αd−
2

B−1) if both
parameters are not known to the algorithm. If d and B are known beforehand we give different

algorithm that is Ω(αd−
1

B−1)-competitive. For both cases, the best previously known algorithm
is Ω(1

m)-competitive [1].

References

[1] MohammadHossein Bateni, Mohammad Taghi Hajiaghayi, and Morteza Zadimoghaddam.
Submodular secretary problem and extensions. ACM Trans. Algorithms, 9(4):32, 2013.

[2] Moran Feldman, Joseph Naor, and Roy Schwartz. Improved competitive ratios for sub-
modular secretary problems (extended abstract). In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques - 14th International Workshop,
APPROX 2011, and 15th International Workshop, RANDOM 2011, Princeton, NJ, USA,
August 17-19, 2011. Proceedings, pages 218–229, 2011.

[3] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained non-
monotone submodular maximization: Offline and secretary algorithms. In Proc. 6th Intl.
Conf. Web and Internet Economics (WINE), pages 246–257, 2010.

[4] Thomas Kesselheim and Andreas Tönnis. Submodular secretary problems: Cardinality,
matching, and linear constraints. CoRR, abs/1607.08805, 2016.

[5] Tengyu Ma, Bo Tang, and Yajun Wang. The simulated greedy algorithm for several sub-
modular matroid secretary problems. Theoret. Comput. Sci., 58(4):681–706, 2016.

[6] G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the maximum of a
submodular set function. Math. Oper. Res., 3(3):177–188, 1978.

95

96

Probabilistic Analysis of Facility Location
on Random Shortest Path Metrics

Stefan Klootwijk1 and Bodo Manthey1

1University of Twente, Enschede, The Netherlands

Abstract
The facility location problem is an NP-hard optimization problem. Therefore,
approximation algorithms are often used to solve large instances. Probabilistic
analysis is a widely used tool to analyze such algorithms. Most research on proba-
bilistic analysis of NP-hard optimization problems involving metric spaces, such as
the facility location problem, has been focused on Euclidean instances, and also in-
stances with independent (random) edge lengths, which are non-metric, have been
researched. However, we would like to extend this knowledge to other, more gen-
eral, metrics.
We investigate the facility location problem using random shortest path metrics.
We analyze some probabilistic properties for a simple heuristic which gives a solu-
tion to the facility location problem: opening a certain number of arbitrary facilities
(with that certain number only depending on the facility opening cost). We show
that, for almost any facility opening cost, this heuristic yields a 1+o(1) approxima-
tion in expectation. In the remaining few cases we show that this heuristic yields
an O(1) approximation in expectation.

Keywords: Facility location, Random shortest paths, Random metrics, Approxi-
mation algorithm

1 Introduction

The (uncapacitated) facility location problem can be described as follows: given a (complete)
graph G = (V,E), facility opening cost fi for each vertex vi ∈ V and a distance d(u, v) between
each pair of vertices u, v ∈ V , find a subset U ⊆ V of vertices at which you open facilities such
that the total cost is minimized. Here, the total cost is given by the sum of the opening cost
fi for all vertices vi ∈ U and the sum of the ‘connection’ cost minu∈U d(v, u) for all vertices
v ∈ V \U .

This problem is known to be NP-hard [2]. Therefore research on the facility location
problem (and other NP-hard problems) has been focused on different heuristics, ranging from
straightforward to rather sophisticated, and their worst-case performance (for instance [4, 7]).

So far, probabilistic analysis of heuristics for optimization problems like the facility loca-
tion problem has been focused on instances either using Euclidean space or on (non-metric)

97

instances with independent (random) edge lengths, since such instances are technically rela-
tively easy to handle. However, we would like to apply probabilistic analysis to more general
metric instances. To do so, we use so-called ‘random shortest path metrics’, which have also
been used by Bringmann et al. [1], who initiated this research.

Random shortest path metrics are defined as follows. Consider an undirected complete graph
G = (V,E) on n vertices. For any edge e ∈ E, let w(e) ∼ Exp(1) be the weight of edge e,
independently drawn from the standard exponential distribution. Then, the distances d(u, v)
between each pair of vertices u, v ∈ V are defined as the minimum total weight of any u, v-path
P in G. The underlying model of random shortest path metrics is also known as first-passage
percolation.

Many structural properties of random shortest path metrics are known, such as the expected
shortest path length (ln(n)/n in expectation as n→∞) [1, 3, 6], and the number of edges on
the shortest path between any two vertices [5].

We consider instances of the facility location problem for which the distances d are randomly
generated using the principle of random shortest path metrics and for which every vertex has
the same nonnegative facility opening cost f , i.e. fi = f ≥ 0 for all i ∈ V . This implies that
the total cost of any solution ∅ 6= U ⊆ V is given by

cost(U) = f · |U |+
∑

v∈V \U
min
u∈U

d(v, u).

Although we do not mention it explicitly, the facility opening cost f does depend on the size
of the instance, i.e., we have f = f(n). It makes sense to do this, since the expected distance
between two arbitrary vertices also depends on n when using random shortest path metrics.

We show that the most trivial procedure of opening a fixed number of arbitrary facilities
(with that fixed number only depending on the facility opening cost f) yields a 1 + o(1)
approximation in expectation unless f ∈ Θ(1/n). If f ∈ Θ(1/n), then this procedure is shown
to yield a O(1) approximation in expectation.

2 An intuitive approach

Intuitively, we observe that the optimal solution for our problem will satisfy |U | ≈ n when
the facility opening cost f is (almost) 0. On the other hand, the optimal solution will satisfy
|U | = 1 when the facility opening cost is relatively large. And when the facility opening cost
f are neither ‘relatively small’ nor ‘relatively large’, |U | will be neither close to n nor close to
1 for the optimal solution.

Let OPT denote the total cost of the optimal solution to the facility location problem.
Furthermore, for k ∈ [n] := {1, . . . , n}, let OPTk denote the total cost of the optimal solution
to the corresponding k-median problem. Then it follows that

OPT = min
∅6=U⊆V

cost(U) = min
∅6=U⊆V


f · |U |+

∑

v∈V \U
min
u∈U

d(v, u)


 = min

k∈[n]
(f · k + OPTk) .

Moreover, based on the results of Bringmann et al. [1, Sect. 5] we know that Uk := {v1, . . . , vk}
is a good approximation for the optimal solution to the k-median problem (whenever k is not
too large), and that the expected cost of this solution is given by E[costk(Uk)] = ln(n/k)+Θ(1).

98

So, intuitively we see that

E[OPT] = E
[

min
k∈[n]

(f · k + OPTk)

]
≈ min

k∈[n]
(f · k + E[OPTk])

≈ min
k∈[n]

(f · k + E[costk(Uk)]) = min
k∈[n]

(f · k + ln(n/k) + Θ(1)) .

Finally, we observe that the function g(k) = f · k + ln(n/k) is minimal for k = 1/f , resulting
in E[OPT] ≈ 1 + ln(nf) + Θ(1). Combining this observation with the foregoing intuitive
arguments, it seems likely that any arbitrary solution U to the facility location problem with
|U | ≈ 1/f yields a good approximation for OPT.

3 Main results

We are interested in the expected approximation ratio of an algorithm that opens approxi-
mately 1/f arbitrary facilities. In order to analyze this, we use the rather trivial algorithm
which opens exactly k := min{d1/fe, n} randomly chosen facilities. Let TRIV denote the total
cost of the solution computed by this algorithm, and let OPT denote the total cost of an op-
timal solution to the facility location problem. Then, using a result from Bringmann et al. [1,
Sect. 5], we can derive the probability distribution of TRIV.

Lemma 1. If k = n, then TRIV has a degenerate probability distribution with P(TRIV = nf) =
1. Otherwise, the distribution of TRIV is given by

TRIV ∼ k · f +

n−1∑

i=k

Exp(i),

where the Exp(i) are independent exponentially distributed random variables with parameter i.

Observe that we can use our intuitive approach to show that E[TRIV] ≈ E[OPT]. However,
using a more thorough analysis, in which we combine this probability distribution with some
bounds for OPT, we can show that TRIV yields either a constant or an asymptotically optimal
approximation ratio. This is summarized in the following theorem.

Theorem 2. Let OPT denote the total cost of the optimal solution to the facility location
problem, and let TRIV denote the total cost of the solution which opens exactly min{d1/fe, n}
randomly chosen facilities. Then, it follows that

E
[
TRIV

OPT

]
= O(1).

Moreover, if either f ∈ o(1/n) or f ∈ ω(1/n), then it follows that

E
[
TRIV

OPT

]
= 1 + o(1).

In order to prove this theorem, we divide the range of possible (asymptotic) facility opening
costs f in three (slightly overlapping) intervals, corresponding to the three intuitive cases
mentioned above: opening all facilities (f ≤ (2− ε)/n), opening exactly one arbitrary facility
(f ≥ 1/nε), and opening some arbitrary facilities ((1 + ε)/n ≤ f ≤ M/nε). For each case we
have found a threshold such that conditioning the expected approximation ratio on the events

99

OPT is larger relatively smaller than this threshold, allows us to prove the bounds mentioned
in Theorem 2.

These thresholds are chosen in such a way that for the case in which OPT is larger than the
threshold, it is relatively easy to bound the conditional expected approximation ratio. On the
other hand, the thresholds are also chosen in such a way that the probability of OPT being
smaller than the threshold becomes sufficiently small. By doing so, we are able to show that
the (relatively) large conditional expected approximation ratio in this case becomes negligible
when multiplied with that probability.

4 Final remarks

As far as we are aware, these results form only a second step into the research of the behavior
of (combinatorial) optimization problems using random shortest path metrics (the first step
being the results in by Bringmann et al. [1]). Even though random shortest path instances are
more difficult to analyze than Euclidean instances or instances with independent random edge
lengths, we were able to derive some good results when analyzing the facility location problem
on it.

It would be interesting to see whether it is possible to prove similar results when using more
sophisticated heuristics that aim to solve the facility location problem. Furthermore, there are
many other NP-hard (combinatorial) optimization problems involving metric spaces for which
it would be interesting to know how they behave on random shortest path metrics.

References

[1] K. Bringmann, C. Engels, B. Manthey, and B.V.R. Rao. Random shortest paths: Non-
euclidean instances for metric optimization problems. Algorithmica, 73(1):42–62, 2015. doi:
10.1007/s00453-014-9901-9.

[2] G. Cornuejols, G.L. Nemhauser, and L.A. Wolsey. The uncapacitated facility location
problem. In Pitu B. Mirchandani and Richard L. Francis, editors, Discrete Location Theory,
chapter 3, pages 119–171. Wiley-Interscience, New York, 1990. ISBN 978-0-471-89233-5.

[3] R. Davis and A. Prieditis. The expected length of a shortest path. Information Processing
Letters, 46(3):135–141, 1993. doi: 10.1016/0020-0190(93)90059-I.

[4] A.D. Flaxman, A.M. Frieze, and J.C. Vera. On the average case performance of some greedy
approximation algorithms for the uncapacitated facility location problem. Combinatorics,
Probability and Computing, 16(5):713–732, 2007. doi: 10.1017/S096354830600798X.

[5] R. van der Hofstad, G. Hooghiemstra, and P. Van Mieghem. First-passage percolation
on the random graph. Probability in the Engineering and Informational Science, 15(2):
225–237, 2001. doi: 10.1017/S026996480115206X.

[6] S. Janson. One, two and three times log n/n for paths in a complete graph with random
weights. Combinatorics, Probability and Computing, 8(4):347–361, 1999. doi: 10.1017/
S0963548399003892.

[7] S. Li. A 1.488 approximation algorithm for the uncapacitated facility location problem.
Information and Computation, 222:45–58, 2013. doi: 10.1016/j.ic.2012.01.007.

[8] J. Vygen. Approximation algorithms for facility location problems (lecture notes). Technical
Report No. 05950, Research Institute for Discrete Mathematics, University of Bonn, 2005.
URL http://www.or.uni-bonn.de/~vygen/files/fl.pdf.

100

Determining the Optimal Pure Strategies
for Average Markov Decision Problem

Dmitrii Lozovanu1 and Stefan Pickl2

1Institute of Mathematics and Computer Science of Academy of Sciences of Moldova;
e-mail:lozovanu@math.md

2Institute for Theoretical Computer Science, Mathematics and Operations Research, Universität der
Bundeswehr, Germany; e-mail:stefan.pickl@unibw.de

ABSTRACT: The infinite horizon average Markov decision problem with finite
state and action spaces is considered and an approach for determining the optimal
pure stationary strategies is proposed.

1 Introduction and problem formulation

We consider the average Markov decision problem determined by:
- a finite set of states X;
- a finite set of actions A(x) for each state x ∈ X;
- a transition probability function p : X × ∏

x∈X
A(x)×X → [0, 1] that gives the proba-

bility transitions pax,y from an arbitrary x ∈ X to an arbitrary y ∈ X for a fixed action
a ∈ A(x), where

∑
y∈X

pax,y = 1, ∀x ∈ X, a ∈ A(x);

- a step reward rx,a for each state x ∈ X and every action a ∈ A(x);
- a starting state x0 ∈ X.

The infinite horizon average Markov decision problem consists in determining a stationary

policy of choosing the actions in the states for which the average reward per transition in the
corresponding Markov process is maximal. It is well-known [4] that an optimal stationary
policy for such a problem can be found by using the following linear programming model:
Maximize

ψ(α, β) =
∑

x∈X

∑

a∈A(x)

rx,aαx,a (1)

subject to 



∑
a∈A(y)

αy,a −
∑
x∈X

∑
a∈A(x)

pax,y αx,a = 0, ∀y ∈ X;

∑
a∈A(y)

αy,a +
∑

a∈A(y)

βy,a −
∑
x∈X

∑
a∈A(x)

pax,yβx,a = θy, ∀y ∈ X;

αx,a ≥ 0, βy,a ≥ 0, ∀x ∈ X, a ∈ A(x),

(2)

101

where θy for y ∈ X represent arbitrary positive values that satisfy the condition
∑
y∈X

θy = 1,

where θy for y ∈ Y are treated as the probabilities of choosing the starting state y ∈ X. In the
case θy = 1 for y = x0 and θy = 0 for y ∈ X \ {x0} we obtain the linear programming model
for an average Markov decision problem with fixed starting state x0.
This linear programming model corresponds to the multichain case of an average Markov

decision problem. If each stationary policy in the decision problem induces an ergodic Markov
chain then the restrictions (2) can be replaced by the restrictions





∑
a∈A(y)

αy,a −
∑
x∈X

∑
a∈A(x)

pax,y αx,a = 0, ∀y ∈ X;

∑
y∈X

∑
a∈A(y)

αy,a = 1;

αy,a ≥ 0, ∀y ∈ X, a ∈ A(y).

(3)

In the linear programming model (1),(2) the restrictions

∑

a∈A(y)

αy,a +
∑

a∈A(y)

βy,a −
∑

x∈X

∑

a∈A(x)

pax,yβx,a = θy, ∀y ∈ X

with the condition
∑
y∈X

θy = 1 generalize the constraint

∑

x∈X

∑

a∈A(y)

αy,a = 1

in the linear programming model (1),(3) for the ergodic case.

The relationship between feasible solutions of problem (1),(2) and stationary strategies in
the average Markov decision problem is the following:
Let (α, β) be a feasible solution of the linear programming problem (1), (2) and denote by

Xα = {x ∈ X| ∑
a∈X

αx,a > 0}. Then (α, β) possesses the properties that
∑

a∈A(x)

βx,a > 0 for

x ∈ X \Xα and a stationary strategy sx,a that correspond to (α, β) is determined as

sx,a =





αx,a∑

a∈A(x)

αx,a

if x ∈ Xα;

βx,a∑

a∈A(x)

βx,a

if x ∈ X \Xα,
(4)

where sx,a expresses the probability of choosing the actions a ∈ A(x) in the states x ∈ X.
Thus, a stationary strategy in a Markov decision problem is a mapping s that for every state

x ∈ X provides a probability distribution over the set of actions A(x); if these probabilities
take only values 0 and 1, then s is called pure stationary strategy, otherwise s is called mixed
stationary strategy.
It is well known [1, 4] that for an arbitrary average Markov decision problem it always has

an optimal solution that corresponds to a pure stationary strategy. However, as it is noted
in [4], the linear programming problem (1),(2) may have a basic solution (α, β) for which the

102

corresponding stationary strategy s determined through (4) is not a pure stationary strategy
for the Markov decision problem. So, if we solve the linear programming problem (1),(2) and
find an optimal basic solution (α∗, β∗) then the corresponding optimal stationary strategy s∗

determined according to (4) may be not a pure strategy.
In this contribution we formulate a new optimization model in terms of stationary strategies

for the average Markov decision problem that allows to determine all its optimal pure stationary
strategies. The proposed model is related to quasi-linear programming in which it is necessary
to maximize a quasi-linear objective function on a convex polyhedron set.

2 The main results

First we show that an average Markov decision problem in terms of stationary strategies can
be formulated as follows:
Maximize

ψ(s, q, w) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,aqx (5)

subject to 



qy −
∑
x∈X

∑
a∈A(x)

pax,y sx,aqx = 0, ∀y ∈ X;

qy + wy −
∑
x∈X

∑
a∈A(x)

pax,ysx,awx = θy, ∀y ∈ X;

∑
a∈A(y)

sy,a = 1, ∀y ∈ X;

sx,a ≥ 0, ∀x ∈ X, ∀a ∈ A(x); wx ≥ 0, ∀x ∈ X,

(6)

where θy are the same values as in problem (1), (2) and sx,a, qx, wx for x ∈ X, a ∈ A(x)
represent the variables that must be found, where qx for x ∈ X express the limiting probabilities
in the states for a given strategy s when the starting sate is chosen with probability θy.
We proved that the optimization problem (5), (6) determines all optimal stationary strategies

for the multichain average Markov decision problem with finite f state and action spaces.

The main result of the paper that allows to ground algorithms for determining the opti-
mal pure stationary strategies for the average Markov decision problem is represented by the
following theorem.

Theorem 1. Let an average Markov decision problem be given and consider the function

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x,a)sx,a qx, (7)

where qx for x ∈ X satisfy the condition





qy −
∑
x∈X

∑
a∈A(x)

pax,y sx,aqx = 0, ∀y ∈ X;

qy + wy −
∑
x∈X

∑
a∈A(x)

pax,ysx,awx = θy, ∀y ∈ X.
(8)

103

Then on the set S of solutions of the system





∑
a∈A(x)

sx,a = 1, ∀x ∈ X;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x)

(9)

the function ψ(s) depends only on sx,a for x ∈ X, a ∈ A(x) and ψ(s) is quasi-linear on
S (i.e. ψ(s) is quasi-convex and quasi-concave on S).

Remark 2. The function (7) on S depends only on sx,a for x ∈ X, a ∈ A(x) because
system (8) uniquely determines qx, ∀x ∈ X for a given s ∈ S.

Thus, based on Theorem 1, we can determine an optimal pure stationary strategy using
classical gradient descent methods for the maximization of a quasi-linear function (7) on a
convex polyhedron set S. It is easy to observe that the convergence of some of the algorithms for
determining the optimal stationary strategies can be grounded using the proposed optimization
models and Theorem 1. Additionally the proposed models can be useful for the formulation
of the average stochastic positional games in terms of pure stationary strategies [3].

3 Conclusion

An average Markov decision problem with finite state and action spaces can be formulated
and studied in terms of stationary strategies using optimization models (5),(6) and (7)-(9).
Classical optimization methods and the corresponding algorithms for the maximization of a
quasi-linear function (7),(8) on the convex polyhedron set determined by (9) can be applied
for finding the optimal pure stationary strategies in the average Markov decision problem.

References

[1] Lozovanu D., Pickl S. Optimization of Stochastic Discrete Systems and Control on Complex
Networks. Springer, 2015.

[2] Lozovanu D., Pickl S. Determining the optimal strategies for discrete control problems on
stochastic networks with discounted costs. Discrete Applied Mathematics, 182, p. 169-180,
2015.

[3] Lozovanu D., Pickl S. On Nash equilibria for stochastic games and determining the optimal
strategies of the players. Contribution to game theory and management, St. Petersburg
University, V VIII, 187–198, 2015.

[4] Puterman M.Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley, New Jersey 2005.

104

Probabilistic Properties of Highly
Connected Random Geometric Graphs

Bodo Manthey1 and Victor M.J.J. Reijnders1

1University of Twente, Department of Applied Mathematics, Enschede, The Netherlands

In this paper we study the probabilistic properties of reliable networks of minimal
total edge lengths. We study reliability in terms of k-edge-connectivity in graphs
in d-dimensional space. We show this problem fits into Yukich’s framework for
Euclidean functionals for arbitrary k, dimension d and distant-power gradient p,
with p < d. With this framework several theorems on the convergence of optimal
solutions follow. We apply Yukich’s framework for functionals so that we can
use partitioning algorithms that rapidly compute near-optimal solutions on typical
examples. These results are then extended to optimal k-edge-connected power
assignment graphs, where we assign power to vertices and charge per vertex. The
network can be modelled as a wireless network.

1 Introduction

The design of fault tolerant networks is an important issue in today’s research, due to their
numerous applications [1]. The goal is to find cheap and reliable networks with some specific
characteristics. Reliability is often expressed in terms of the connectivity of a network. For
example, we might want to have multiple paths between each pair of nodes to account for
possible failures in a link.

Wireless ad hoc networks have also received significant attention in recent studies [4, 6].
Instead of direct connections between nodes, communication takes place through single-hop
transmissions or by relaying through intermediate nodes. Here we assign a transmission power
to each node. As transmission range is directly related to power usage and therefore to battery
lifetime, the goal is to find a fault tolerant network with minimal total power usage.

Finding a cheapest k-edge-connected network is NP-hard [5], and so is finding a minimal
power wireless network [3]. As we still want to have reasonably good solutions in acceptable
computation time, we need to find good heuristics. We fit the problems into Yukich’s framework
for Euclidean functional [8] to get limit theorems and concentration results, as well as using
them for analysis of the partitioning algorithm.

Partitioning algorithms have shown a lot of potential with similar problems [2]. In practice,
partitioning algorithms are very fast. Partitioning algorithms divide the whole problems into
smaller cells and compute optimal solutions on these. Then these solutions are joined to obtain
a solution for the whole problem.

105

2 Definitions and Results

All graphs in this paper are undirected and simple. Let G = (V,E) be a graph. We assume
V ⊂ Rd, where d is a constant and V is finite. The cost of an edge is its length raised to the
power of the distant-power gradient p > 0. So adding edge (u, v) to a graphs increases the cost
by |(u, v)|p, where |(u, v)| denotes the Euclidean distance between u and v. Here, we assume p
is a constant.

A graph is k-edge-connected if the graph is still connected when at most k − 1 edges are
removed, or if it is complete. The latter is to make sure k-edge-connected graphs on less
than k + 1 nodes still exist, which saves us from dealing with all kind of exceptions in proofs.
Alternatively, a network is k-edge-connected if there exist at least k edge-disjoint paths between
every pair of vertices.

Let d ∈ N be arbitrary and let p > 0. Then MkEEp(V) is the minimal length of a k-
edge-connected graph in terms of summed edge lengths on V with pth power-weighted edges.
Thus

MkEEp(V) = min
X∈S(V,k)

∑

e∈X
|e|p, (1)

where S(V, k) is the set of k-edge-connected simple graphs on V and |e| denotes the Euclidean
length of an edge e. Following Yukich [8], we call MkEEp a functional.

One of the desired properties for functionals is subadditivity. Roughly speaking, this shows
that the function value of a whole set is not larger than the sum of function values of the sets
in a partition of this set (with some error term).

Theorem 1. For p ≥ 1, MkEEp is geometrically subadditive, i.e. for all finite sets V , all
rectangles R and all partitions of R into rectangles R1 and R2 we have

MkEEp(V ∩R) ≤ MkEEp(V ∩R1) + MkEEp(V ∩R2) + C1(diamR)p, (2)

where C1 = C1(d, p) is a constant.

We would also want MkEEp to be superadditive. Roughly speaking, this would show that
the function value of a whole set is not lower than the sum of function values of the sets in
a partition. Combining sub- and superadditivity makes the functional nearly additive in the
sense that MkEEp(F,R) ≈ MkEEp(F,R1) + MkEEp(F,R2).

We could then approximate the optimal solution value of the whole set by the sum of
optimal solutions on its partitions. It is easily checked however that MkEEp does not possess
superadditivity. This is why we introduce the canonical boundary functional, an idea first
articulated in Redmond’s thesis [7]. In boundary functionals, the entire boundary of the
rectangle is considered as one additional vertex that can be used. We also refer to Yukich [8]
for more on this topic.

MkEEp
B is the boundary functional of MkEEp, so that MkEEp

B(V ∩R) is the minimal length
of a k-edge-connected boundary graph in terms of summed edge lengths on V ∪ ∂R in d-
dimensional rectangle R with pth power-weighted edges. Here ∂R denotes the boundary of R.
A vertex v is connected to ∂R by adding edge (v, v∂) where v∂ = arg minw∈∂R |(v, w)|.
Theorem 2. For p ≥ 1, MkEEp

B is a superadditive functional, i.e. for all finite sets V , all
rectangles R and all partitions of R into rectangles R1 and R2 we have

MkEEp
B(V ∩R) ≥ MkEEp

B(V ∩R1) + MkEEp
B(V ∩R2). (3)

106

As we cannot directly show near additivity, we want to show that MkEEp and MkEEp
B

are pointwise close. Then we would get approximately get sub- and superadditivity for both
functionals.

Theorem 3. For 1 ≤ p < d, MkEEp is pointwise close to MkEEp
B, i.e. for all finite sets

V ⊂ [0, 1]d we have

|MkEEp(V)−MkEEp
B(V)| = o(|V |(d−p)/d). (4)

We have shown geometric subadditivity, superadditivity and pointwise closeness, creating a
powerful set of properties. These properties are more useful for obtaining other results when
the functional also is smooth. This describes how strong the variations of a functional are if
vertices are added or deleted. Smooth functionals behave a lot more predictable and therefore
it plays an important role in many limit theories.

Theorem 4. For 1 ≤ p < d, MkEEp is smooth, i.e. for all finite sets U and V we have

|MkEEp(U ∪ V)−MkEEp(U)| = O(|V |(d−p)/d). (5)

One of the concentration results we have obtained is stated below. It shows that the func-
tional values are not far from their expected value.

Theorem 5. For 1 ≤ p < d and k ∈ N, there exists a constant α = α(d, k) ≥ 0 such that

lim
n→∞

MkEEp(V,R)/n(d−p)/p = α c.c., and (6)

lim
n→∞

MkEEp
B(V,R)/n(d−p)/p = α c.c., (7)

where n = |V |. Here c.c. denotes complete convergence.

3 Partitioning algorithm

In a partitioning algorithm, the Euclidean plane is divided into a number of cells that all
contain only a few points. On each cell an optimal solution is calculated. This is generally
much faster than calculating a solution on all points at once, as these problems are often
NP-hard. The solutions of all cells are then joined to obtain a solution for the whole set.

We implement a partitioning scheme for MkEEp having a polynomial running time, for which
we derive approximation guarantees.

Algorithm 6 (Partitioning Scheme).
Input: set V ⊆ [0, 1]d of n points and number of points per cell s

1. Partition [0, 1]d into ` = d
√
n/s stripes of dimension d− 1 such that each stripe contains

exactly n/` = (nd−1s)1/d points.

2. Keep partitioning each i + 1-dimensional stripe into ` stripes of dimension i such that
each stripe contains exactly n/`i = (nd−isi)1/d points. Stop at i = 1 so that each 2-
dimensional stripe is partitioned into ` cells with n/`d = s points. In this way we end up
with `d = n/s cells. Here we assume s > k.

3. Compute a graph achieving the optimal solution of MkEEp for each cell.

4. Join the graphs to obtain a k-edge-connected graph on V .

107

It can be easily verified that the graph we get as an output from Algorithm 6 is k-edge-
connected. With this algorithm and the properties obtained in Section 2 we can now give
running time and approximation guarantees. Depending on the way we compute the optimal
solution on each cell, we need to vary s to get a polynomial running-time.

Theorem 7. If the algorithm for computing an optimal solution on each cell in Algorithm 6
has a running time of O(Cn2

) for some constant C, the Partitioning Scheme has a polyno-
mial running time if we choose s = O(

√
log n). The approximation guarantee then becomes

MkEEp(V) +O((n/s)(d−p)/d) for k-edge-connected graphs.

4 Extention to wireless networks

Besides our model for wired networks, we consider a different model for wireless networks.
These are defined by assigning power to each vertex. A power assignment PA assigns a real,
positive value to all vertices v ∈ V . The corresponding power assignment graph then contains
all edges (u, v) for which PA(u),PA(v) ≥ |(u, v)|p. The costs of k-edge-connected power as-
signment graphs is then simply the sum of all assigned powers. We obtain results similar to
Theorems 1 – 5 for the functional in wireless networks.

References

[1] Fatiha Bendali, I Diarrassouba, Ali Ridha Mahjoub, M Didi Biha, and Jean Mailfert, A
branch-and-cut algorithm for the k-edge connected subgraph problem, Networks 55 (2010),
no. 1, 13–32.

[2] Markus Bläser, Bodo Manthey, and BV Raghavendra Rao, Smoothed analysis of partition-
ing algorithms for euclidean functionals, Algorithmica 66 (2013), no. 2, 397–418.

[3] Andrea EF Clementi, Paolo Penna, and Riccardo Silvestri, On the power assignment prob-
lem in radio networks, Mobile Networks and Applications 9 (2004), no. 2, 125–140.

[4] Maurits de Graaf and Bodo Manthey, Probabilistic analysis of power assignments, Inter-
national Symposium on Mathematical Foundations of Computer Science, Springer, 2014,
pp. 201–212.

[5] Michael R Gary and David S Johnson, Computers and intractability: A guide to the theory
of np-completeness, 1979.

[6] Ram Ramanathan and Regina Rosales-Hain, Topology control of multihop wireless networks
using transmit power adjustment, INFOCOM 2000. Nineteenth Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 2, IEEE,
2000, pp. 404–413.

[7] Charles Redmond, Boundary rooted graphs and euclidean matching algorithms, Ph.D. the-
sis, Lehigh University, Bethlehem, PA, USA, 1993.

[8] Joseph E Yukich, Probability theory of classical euclidean optimization problems, Lecture
Notes in Mathematics, vol. 1675, Springer-Verlag, Berlin, 1998.

108

Radio connectivity of graphs

Ruxandra Marinescu-Ghemeci1

1Faculty of Mathematics and Computer Science, University of Bucharest, Romania,
The Research Institute of the University of Bucharest ICUB, Romania,

verman@fmi.unibuc.ro

Given a graph G and a vertex coloring c, G is called l-radio connected if between
any two distinct vertices u and v there is a path such that coloring c restricted to
that path is a l-radio coloring. The smallest number of colors needed to make G
l-radio connected is called the l-radio connection number of G. In this paper we in-
troduce these notions and initiate the study of radio connectivity, providing results
on the 2-radio connection number, also called L(2, 1)-connection number: upper
and lower bounds, exact values for known classes of graphs and graph operations.

1 Introduction

Various types of graph colorings have been introduced in literature motivated by problems in
communication networks. An important property in such networks is connectivity, that is to
have paths between each pair of vertices. Many times it is not sufficient to have arbitrary
paths, but paths that assure a safe communication. For example, if interference may occur,
it is necessary to have paths along which interferences are avoided. This might mean, for
example, that the labels associated to the edges or vertices of the path should be distinct, as
in the case of rainbow connectivity. Related to this, different types of constrains were imposed
to the colors of the edges of vertices in a path. For example, if only adjacent edges in a path
are required to have distinct colors, such a path is called proper path. The notion of proper
connectivity, similar to rainbow connectivity but through proper paths instead of rainbow
paths, was introduced in [1]. Also, a more general case was considered in [4], where edges at
distance at most l in a path are required to have distinct colors. Similar problems were studied
for vertex-colorings.

Yet, there are situations when, in order to have no interference, it is necessary that the
difference between labels of close edges or vertices - close meaning at distance less than a fixed
level l, to be greater than a certain limit. To model this type of requests radio colorings were
introduced. First, Hale [3] considered only two levels of interference and defined a L(2, 1)-
labeling of a graph. This type of labeling was later generalized to more levels of interferences -
L(d1, d2, ..., dl)-labelings, among which the most known are radio colorings, where di = l+1−i.
For a fixed level l, a l-radio coloring is a function c : V (G) → N∗ satisfying the following
property (called radio condition): |c(u) − c(v)| ≥ l + 1 − d(u, v), ∀u 6= v ∈ V (G). Assuming
that the smallest color used is 1, the maximum color used by c is called the span of c and is
denoted span(c). The minimum span of a radio coloring is the l-radio number of G. For l = 2,
c is actually a L(2, 1)-labeling and 2-radio number is called L(2, 1)-number and denoted λ(G).

109

But, in order to solve interference or security problems sometimes is not necessary to color
all vertices of the graph such that every pair of vertices satisfy the radio condition, but to
assure that between every pair of vertices there is at least one path such that the coloring
restricted to that path is a radio coloring, as in the case of proper connectivity. Motivated by
this, the aim of this paper is to introduce the notion of l-radio connectivity for a vertex-colored
graph and present results for the case when l = 2 regarding upper and lower bounds, exact
values for some classes of graphs and graph operations, existence problems.

Let G be a connected graph and c : V (G) → N a coloring of G having the smallest value
1 and the maximum value span(c) = k. Consider l a number representing the number of
levels of interference. A path P in G is called l-radio path if coloring c restricted to V (P) is a
l-radio coloring for P . The coloring c is called l-radio path coloring if there exists a l-radio path
between every pair of distinct vertices of G. A graph is l-radio connected if it admits a l-radio
path coloring. The minimum span of a l-radio path coloring of G is called l-radio connection
number of G and is denoted rccl(G). A l-radio path coloring with span equal to rccl(G) is
called a minimum l-radio path coloring. For l = 2, since a 2-radio coloring is called L(2, 1)-
coloring, we will use the notions of L(2, 1)-path coloring, L(2, 1)-paths, L(2, 1)-connected graph.
Denote λc(G) = rcc2(G) and refer to it as L(2, 1)-connection number of G.

For basic notions and notations we refer to [5]. Denote by [n] = {1, 2, . . . , n}.
Next we will state results on L(2, 1)-connection number of a graph. We will study 2-(edge)

connected graphs, since robust networks present interest for interference problems. L(2, 1)-
connection number of a graph is often much smaller than its L(2, 1)-number, thus L(2, 1)-path
coloring might be more useful in practice than L(2, 1)-labelings for networks with interferences.

2 L(2, 1)-connection number of a graph

Lemma 1. Let G be a connected graph with n ≥ 2 vertices.
1. If G is a tree then λc(G) = λ(G)
2. λ(Pdiam(G)+1) ≤ λc(G) ≤ λ(G)
3. If H is a spanning connected graph of G, then λc(G) ≤ λc(H).

Proposition 2. Let G be a connected graph with n ≥ 2 vertices.
1. λc(G) = 3 if and only if G = P2

2. λc(G) = 4 if and only if 3 ≤ n ≤ 4 and G 6= S3

3. λc(G) ≥ 5 if and only if n ≥ 5 or G = S3.

Proposition 3. If G is a graph with n ≥ 5 vertices having a Hamiltonian path, then λc(G) = 5.

Corollary 4. λc(Cn) = 4 for n = 3, 4 and λc(Cn) = λc(Kn) = 5 for n ≥ 5.

Note that difference between λ(G) and λc(G) can be large. In fact, next result holds.

Proposition 5. For any pair of integers a, b ≥ 5 with a + 1 < b there exists a graph G with
λc(G) = a and λ(G) = b.

Consider now graphs obtained by some classical graph operations. We remind that for two
graphs G and H the Cartesian product G�H has vertex set V (G) × V (H) and two vertices
(u, v) and (u′, v′) are adjacent if (u = u′ and vv′ ∈ E(H)) or (uu′ ∈ E(G) and v = v′). For a
vertex v ∈ V (H) denote Gv the graphs induced in G�H by vertices from V (G) × {v}. Note
that Gv is isomorphic to G. The join G ∨ H is the graph with vertex set V (G) ∪ V (H) and
edge set E(G ∨ H) = E(G) ∪ E(H) ∪ {uv|u ∈ V (G) and v ∈ V (H)}.

110

Proposition 6. Let 2 ≤ m ≤ n such that m + n ≥ 5. Then λc(Km,n) = 5.

Theorem 7. Let G and H be two connected nontrivial graphs. Then λc(G�H) = 4 if |V (G)| =
|V (H)| = 2, otherwise λc(G�H) = 5.

Sketch of Proof. Let T and T ′ be spanning rooted trees of G, respectively H. Color the
spanning tree of each copy Gv level by level from the root, alternating colors 1 and 5 if the
level of v is even in T ′, and 4 and 2 otherwise.

Proposition 8. Let G and H be two connected nontrivial graphs. Then λc(G ∨ H) = 4 if
|V (G)| = |V (H)| = 2, otherwise λc(G ∨ H) = 5.

Corollary 9. Let 2 ≤ n1 ≤ n2 ≤ ... ≤ nq. Then λc(Kn1,...,nq) = 4 if q = 2 and n1 = n2 = 2,
otherwise λc(Kn1,...,nq) = 5.

For a path P = [v1, . . . , vp], denote by start2(P) = v2 and end2(P) = vp−1.
The following Theorem provide an upper bound of λc for 2-connected graphs and also a

particular type of L(2, 1)-path coloring with 3 fixed colors, useful for finding an upper bound
for an arbitrary graph, obtained by combining L(2, 1)-path colorings of its blocks.

Theorem 10. Let G be a 2-connected graph with n ≥ 4 vertices and L ≥ 10. Let S be a vertex
in V (G) and cs, cs1, cs2 ∈ [L] such that cs1 6= cs2 and |cs − csi| ≥ 2 for i = 1, 2. Then there
exists a L(2, 1)-path coloring c of G with span at most L such that c(S) = cs and each vertex
v in G has an associated multiset containing two colors, namely: for v 6= S, C(v) = {cv1, cv2}
with |c(v) − cvi| ≥ 2, i = 1, 2 and C(S) = {cs1, cs2} satisfying the properties:

1. For every pair of vertices x 6= y ∈ V there exists a L(2, 1)-path Pxy from x to y such that
c(start2(Pxy)) ∈ C(x) and c(end2(Pxy)) ∈ C(y).

2. For every vertex x 6= S there exist two L(2, 1)-paths Px and P ′
x from x to S such that

c(start2(Px)), c(start2(P
′
x)) ∈ C(x), c(end2(Px)) = cs1 and c(end2(P

′
x)) = cs2.

Sketch of Proof. It suffices to consider L = 10. Let Cp = [v1 = S, v2, . . . , vp, vp+1 = v1] be a
cycle containing S with p ≥ 4 (exists, since G is 2-connected). Then G has an ear decomposition
such that the initial cycle is Cp [5]. The idea of the proof is by induction on the number of
ears added to Cp. Consider first Cp. Color c(S) = cs, c(v2) = cs1 and c(vp) = cs2. Then color
the other vertices of Cp as follows. If p = 4 choose c(v3) ∈ [L]−{c(S), cs1, cs2, cs1 ±1, cs2 ±1}.
Otherwise color in this order v3, . . . , vp−3 such that c(vi) ∈ [L] − {c(vi−1), c(vi−2), c(vi−1) ± 1};
then choose c(vp−2) /∈ [L] − {c(vp−4), c(vp−3), c(vp−3) ± 1, cs2}; then color vp−1 such that
c(vp−1) /∈ [L] − {c(vp−3), c(vp−2), c(vp−2) ± 1, cs2, c(S), cs2 ± 1}. Let C(vi) = {c(vi−1), c(vi+1)}
for 2 ≤ i ≤ p. Since c is actually a L(2, 1)-labeling of Cp, properties 1 and 2 are satisfied.

Assume now that the statement is true before ear P is added. Denote by G′ the graph before
adding ear P and by G the obtained graph. By induction, there exists a L(2, 1)-path coloring
c′ of G′ with stated properties. Denote x and y the extremities of P such that y 6= S. We
extend c′ to a L(2, 1)-path coloring c of G such that properties 1 and 2 are verified. This will
be done by coloring vertices of P in a similar manner we colored Cp, but taking into account
also colors from C(x) = {cx1, cx2} and C(y) = {cy1, cy2} through which we can build paths
from x or y to any other vertex of G′. It is actually enough to consider Pxy a L(2, 1)-path from
x to y in G′ with property 1 and assume c(start2(Pxy)) = cx1. Then, if we connect vertices of
P with vertices of G′ only through vertex y or path Pxy, there is no need to avoid color cx2

for vertices of P .

111

Corollary 11. If G is a 2-connected graph, then λc(G) ≤ min{10, ∆(G) + 3}.

Theorem 12. Let G be a connected graph with n ≥ 5 vertices and b the maximum number of
bridges incident in the same vertex. Then max{b + 2, 5} ≤ λ(G) ≤ max{10, b + 5}.

Sketch of Proof. Let L = max{10, b+5}. We describe an algorithm for finding a L(2, 1)-path
coloring of G using at most on L colors. Consider T the block - cut vertex tree associated to G
and fix as root a cut vertex r. Traverse T starting from r level by level, exploring only vertices
corresponding to cut vertices. Denote V ′ the set of colored vertices. When a cut vertex x is
explored, color as described bellow the vertices of the blocks that are direct descendants of x
such that a property similar to property 1 from Theorem 10 is satisfied in G[V ′].

For r consider c(r) = 1 and C(r) = {3}. Let x be cut vertex currently explored and
C(x) = {cx1, cx2}. If cx2 = cx1 then choose cx3 ∈ [L] − {cx1, c(x), c(x) ± 1}. Otherwise set
cx3 = cx2. Modify set C(x) = {cx1, cx3}. Note that cx3 is either cx2 or a new value added
to C(x). Color the blocks that are direct descendants of x in T in the following order: blocks
with 4, 3, respectively 2 vertices.

For blocks with 4 vertices apply Theorem 10 for S = x, cs = c(x), cs1 = cx1, cs2 = cx3.
For a block with 3 vertices x, u1, u4, choose cx4 such that |cx4 −cx1| ≥ 2 and |cx4 −c(x)| ≥ 2

(cx4 can be equal with cx3). Set c(ui) = cxi, C(ui) = {c(x), cx5−i} for i = 1, 4.
Let Bi, i ∈ [k] be the blocks with 2 vertices that are direct descendants of x, corresponding to

bridges xvi. Note that k ≤ b. Choose for c(vi) distinct colors from [L]−{c(x), cx1, cx3, c(x)±1}
and add them to C(x), then set C(vi) = {c(x)}.

Corollary 13. If G is a 2-edge connected graph, then λc(G) ≤ min{10, ∆(G) + 3}.

3 Conclusions

Finding a minimum L(2, 1)-path coloring present interest not only from theoretical point of
view, but also for algorithmic approaches and applications. All 2-edge-connected graphs with
at least 5 vertices presented in this paper have L(2, 1)-connection number 5, which is the lower
bound. Some natural questions raise at the beginning of the study of L(2, 1)-connectivity:
what type of graphs have L(2, 1)-connection number 5; are there efficient algorithms to find
the L(2, 1)-connection number of a graph or at least to decide if it equals 5?

References

[1] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero, Zs. Tuza,
Proper connection of graphs, Discrete Mathematics, 312(17)(2012), 2550–2560.

[2] T. Calamoneri, The L(h, k)-Labelling Problem: An Updated Survey and Annotated
Bibliography, Computer Journal 54(8)(2011), 1344-1371.

[3] W. K. Hale, Frequency assignment: theory and applications, Proc. IEEE 68(1980), 1497-
1514.

[4] X. Li, C. Magnant, M. Wei, X. Zhu, Distance proper connection of graphs,
arXiv:1606.06547.

[5] D. B. West, Introduction to Graph Theory, Second edition, Prentice Hall, 2001.

112

Domination structure with nonempty
minimal edge set for cubic graphs

Misa Nakanishi1

1nakanishi@2004.jukuin.keio.ac.jp

From a research of several recent papers, we are concerned with domination
number in cubic graphs. A cubic graph is partitioned by substructures which are
prescribed for a minimal edge set of a minimum dominating set. It is applied to
Reed’s conjecture and gives a sufficient condition. Also, the minimum dominating
set of 3-connected cubic graphs is solved.

1 Introduction

In this paper, a graph G is simple and undirected with a vertex set V and an edge set E.
A dominating set X ⊂ V is such that every vertex of V − X is adjacent to a vertex of
X. The minimum cardinality taken over all minimal dominating sets of G is the domination
number γ(G). The minimum cardinality taken over all maximal independent sets of G is the
independent domination number i(G). A minimum dominating set is called a d-set.

For the domination number of a graph, in decades the research on cubic graphs has intensively
studied that show several important results. A random 3-regular graph asymptotically almost
surely has no 3-star factors [2]. Reed indicated that almost all cubic graphs are hamiltonian,
also the upper bound of the domination number of a connected cubic graph G is conjectured
as ⌈|G|/3⌉ [6]. Then the counterexamples that exceed the bound have shown, for example,
there is an extremal graph of the domination number 21 over 60 vertices following the series
of cubic graphs beyond the boundary [5] [4].

The connected cubic graphs that have the domination number above the bound have a mini-
mum dominating set as an independent set. Otherwise the conjecture is true.

Also, we refine the structure of path covers used in the proof of cubic graph domination by
Reed. The minimum dominating set of 3-connected cubic graphs is determined by our proposed
structure.

2 Preliminary results

A sufficient condition for γ(G) = i(G) was represented for a general graph G by an induced
subgraph isomorphic to K1,3, also called 3-star, free [1].

113

Proposition 1 ([1]). If G does not have an induced subgraph isomorphic to K1,3, then γ(G) =
i(G).

An induced subgraph, say I, is defined as N [v1] ∪ N [v2] on two adjacent vertices v1 and v2

with degree at least three. We observe I as a forbidden subgraph for γ(G) = i(G) with the
simplest proof.

Proposition 2 ([3]). For a graph G, if I ̸⊆ G then γ(G) = i(G).

Proof. Let X be a d-set of G and E(X) be minimal. For x, y ∈ X such that xy ∈ E(G), let
dG(x) = 2 and NG(x)−y = {x′}. For all z ∈ NG(x′)−x, if z /∈ X then X−{x}∪{x′} = X ′ that
is a d-set. ||X||−1 ≥ ||X ′|| contrary to the minimality of E(X). If there is z ∈ NG(x′)−x such
that z ∈ X then X − {x} = X ′′ that is a d-set and contrary to the minimality of V (X).

A 3-connected cubic graph was conjectured as the difference between the independent domi-
nation number and the domination number is one, but it was disproved as taken in infinity.

Proposition 3 ([7]). For any c ∈ {0, 1, 2, 3} and any integer k ≥ 0 there exist infinitely many
cubic graphs with connectivity c (say one as G) for which i(G) − γ(G) = k.

We consider a completion of Reed’s conjecture. The next statement is suggested. It has
some counterexamples in cubic graphs with connectivity one and two. A graph H4 in [5], for
example, is observed as it has a minimum dominating set as an independent set.

Conjecture ([6]). Every connected cubic graph G contains a dominating set of ⌈|G|/3⌉ ver-
tices.

3 Main theorem

Theorem 4. For a connected cubic graph G, if γ(G) > ⌈|V |/3⌉ then γ(G) = i(G).

Let CG be a cycle space with length 0 mod 3 for a graph G. Two cycles are connecting without
seam if and only if one of them is constructed by adding one ear (not a cycle) to the other.
Let C0 be a maximal subset of CG such that cycles are connecting without seam.

Theorem 5. For a 3-connected cubic graph G, C0 determines its d-set.

4 Perspective

Further, we have a proposition.

Theorem 6. For a 3-connected graph G, C0 determines its d-set.

References

[1] Robert B. Allan, Renu Laskar: On domination and independent domination numbers of a
graph. Discrete Mathematics. 23, 73-76 (1978)

114

[2] Hilda Assiyatun, Nicholas Wormald: 3-star factors in random d-regular graphs. European
Journal of Combinatorics. 27, 1249-1262 (2006)

[3] E. J. Cockayne, O. Favaron, C. M. Mynhardt, J. Puech: A characterization of (γ, i)-trees.
Journal of Graph Theory. 34, 277-292 (2000)

[4] Alexander Kelmans: Counterexamples to the cubic graph domination conjecture.
arXiv:0607512v1. 20 Jul 2006

[5] A. V. Kostochka, B. Y. Stodolsky: On domination in connected cubic graphs. Discrete
Mathematics. 304, 45-50 (2005)

[6] Bruce Reed: Paths, stars and number three. Combinatorics, Probability and Computing.
5, 277-295 (1996)

[7] I. E. Zverovich, V. E. Zverovich: Disproof of a conjecture in the domination theory. Graphs
and Combinatorics. 10, 389-396 (1994)

115

116

The Greedy Algorithm for Capacitated
Covering Problems

Britta Peis1, José Verschae2, and Andreas Wierz1

1RWTH Aachen University
2Pontificia Universidad Católica de Chile

1 Introduction

Integer programs of the form min{cTx : Ax ≥ r, x ∈ Zn
+} (P) with A ∈ ZL×E+ , r ∈ ZL

and c ∈ ZE
+ are called covering problems. Here, we assume that L is a family of subsets

of the elements which, for each row of A, describes the columns which are zero. That is,
S ∈ L, e ∈ S ⇒ AS,e = 0. The name stems from the following observation: solutions to such
problems use (multiple) copies of the columns in order to cover the righthandside value for
each constraint. Since all coefficients are non-negative, adding additional copies of a column
can not render a solution vector infeasible.

There are interesting connections between covering and scheduling problems. In fact, several
single machine scheduling problems such as 1|pmnt|∑j fj(Cj), with fj non-decreasing, or
1|rj |

∑
j wjCj can be formulated as covering problems in a relatively simple way. The former

was pointed out in [11] to be a generalization of unsplittable flow cover on a path, which can
be 4-approximated [1].

Besides this, many interesting combinatorial optimization problems can also be formulated
in this manner. Famous examples are subset cover, cut covering and contra-polymatroids.
Contra-polymatroids are of the form above with L being the Boolean lattice and constraints of
the form

∑
e6∈S xe ≥ r(S) for all S ∈ L. The function r : L → Z+ is supermodular, monotone

decreasing and non-negative. For contra-polymatroids, a very simple dual greedy algorithm is
able to obtain an optimum solution. The dual to the linear relaxation of the covering problem
above can be stated as max{yT r : yTA ≥ c, y ≥ 0} (D). Set S = ∅, increase the corresponding
dual variable yS until some element e gets tight. Set xe = r(S + e) − r(S), add e to S and
iterate until r(S) = 0. Polymatroids, and the depicted greedy algorithm, are known for almost
half a century [4].

For the knapsack cover problem, and many other problems as well, the exact same algorithm
was used in order to obtain constant factor approximations [1, 2, 12]. In most of these known
approximation results, a problem specific analysis was used. Many times, these analyses look
very similar and use essentially the same techniques.

If A ∈ {0, 1}m×n, there are fairly general conditions on the system (A, r) known, which ensure
that the greedy algorithm computes an optimum solution [4, 5, 6, 8, 9, 10]. Most results have
in common that the constraints form some kind of lattice on which r is either submodular or
supermodular. We discuss similar conditions in case of A ∈ Zm×n

+ and approximate solutions.

117

2 Our results

We consider integer covering problems (P) with constraints for subsets of elements which form
a ring-family. A family F of subsets of groundset E is called a ring-family if any two sets
S, T ∈ F imply S ∪ T, S ∩ T ∈ F . That is, a family is called a ring-family, if it is closed
under union and intersection. We also assume that ∅, E ∈ F . A ring-family forms a lattice
L = (F ,⊆,∪,∩). The Boolean lattice is an example for a ring-family.

We analyze the following simple dual greedy algorithm. Initialize y ≡ 0, x ≡ 0. Select the
minimal element in L and increase yS until

∑
S ySAS,e = ce some element e 6∈ S. Let S′ be

the minimal element in L which also contains e. Set xe = d r(S)+−r(S′)+

AS,e
e. Remove all elements

from L which do not contain S′ and iterate until r(S) ≤ 0.
In general, we may not assume that the greedy algorithm will terminate with a feasible

solution for (P). But we can show that it will, if the system (A, r) satisfies the following
conditions.

(P1) r is monotone: r(S) ≥ r(T) for all S � T and

(P2) For each element e ∈ E, A∗,e is monotone: AS,e ≥ AT,e for all S � T .

(P3) For every two sets S � T ∈ L with r(T) > 0 and e 6∈ T , let S′ = min(L \ S \ e) and

T ′ = min(L \ T \ e). Then r(S)−r(S′)
AS,e

≥ r(T)−r(T ′)
AT,e

.

Unfortunately, these properties do not suffice in order to obtain good approximation guar-
antees. Even with two elements, we can construct instances which have an unbounded in-
tegrality gap. Moreover, we can show that subset cover can be formulated as a problem of
type (P) satisfying (P1) - (P3). Hence, no o(1 − log n) approximation for (P) exists unless
NP = DTIME(nO(log logn)) [7]. The former issue can be handled by a careful truncation of
coefficients of the matrix A.

Definition 1. Given a system (A, r) on a ring-family satisfying (P1) - (P3), we define the
system (A′, r) as below to be the truncated system. For S ∈ L and e 6∈ S, let S′ = min(L\S\e).
Then set A′S,e = min{AS,e, r(S)+ − r(S′)+}.

We can show that the truncated system (A′, r) contains the same integer feasible points as
the system (A, r). Although the truncation no longer satisfies (P3), we can also show that the
greedy algorithm applied to system (A′, r) still obtains a feasible solution. The approximation
factor depends on the following parameter δ. Given S ∈ L with e 6∈ S, let S′ = min(L \ S \ e)
and define δS,e =

A′
∅,e

A′
S,e

, if r(S′) ≥ 0 and A′S,e > 0, and δS,e = 1, otherwise. Let δ = maxS,e δS,e

be the maximum of these terms.
The value of δ is the maximal ratio between coefficients in A′ which may occur on a chain

in the dual constructed by the greedy algorithm before the rank becomes negative. Intuitively,
the following happens: If the algorithm selects many elements with small coefficient A′S,e, these
may have a very large contribution A′∅,e ≤ δA′S,e towards the constraint for S = ∅. Hence, a
small value of δ guarantees that no constraint is oversubscribed by a large factor. This, in-turn,
results in a good approximation guarantee using standard arguments. Our main result, stated
in its simplest form, is the following.

Theorem 2. The greedy algorithm applied to the truncation (A′, r) of a system (A, r) on a
ring-family satisfying (P1) - (P3) obtains a solution with cost no larger than b(δ + 1)OPT ,118

or bδOPT , if r is non-negative. Here, b = 1, if r(S)+−r(S′)+

A′
S,e

∈ Z+ for all S ∈ L, e 6∈ S, S′ =

min(L \ S \ e), and b = 2, otherwise.

Our approximation factors coincide with many well-known results, for example, for poly-
matroids, polymatroid intersection, vertex cover, knapsack cover with item multiplicity and
separable convex cost- and concave utility functions, generalized steiner trees, minimum mul-
ticut on trees, knapsack cover with precedence constraints, or flow cover on a line. In terms of
lower bounds, we can construct a family of instances whose truncation (A′, r) has an integrality
gap of o(log δ).

References

[1] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A unified approach to
approximating resource allocation and scheduling. JACM, 2001.

[2] T. Carnes and D. Shmoys. Primal-dual schema for capacitated covering problems. IPCO,
2008.

[3] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations
research, 1979.

[4] J. Edmonds. Submodular functions, matroids, and certain polyhedra. Combinatorial
structures and their applications, 1970.

[5] U. Faigle and S. Fujishige. A general model for matroids and the greedy algorithm.
Mathematical programming, 2009.

[6] U. Faigle and W. Kern. An order-theoretic framework for the greedy algorithm with
applications to the core and weber set of cooperative games. Order, 2000.

[7] U. Feige. A threshold of ln n for approximating set cover. JACM, 1998.

[8] A. Frank. Increasing the rooted-connectivity of a digraph by one. Mathematical Program-
ming, 1999.

[9] S. Fujishige. A note on frank’s generalized polymatroids. Discrete Applied Mathematics,
1984.

[10] S. Fujishige. Dual greedy polyhedra, choice functions, and abstract convex geometries.
Discrete Optimization, 2004.

[11] W. Höhn, J. Mestre, and A. Wiese. How unsplittable-flow-covering helps scheduling with
job-dependent cost functions. ICALP, 2014.

[12] S. McCormick, B. Peis, J. Verschae, and A. Wierz. Primal–dual algorithms for precedence
constrained covering problems. Algorithmica, 2016.

[13] A.Schulz and J. Verschae. Min-sum scheduling under precedence constraints. LIPIcs-
Leibniz International Proceedings in Informatics, 2016.

119

120

Brouwer’s conjecture on the sum of
Laplacian eigenvalues of a graph

Shariefuddin Pirzada1 and Hilal A. Ganie2

1,2Department of Mathematics, University of Kashmir, Srinagar, Kashmir, India

Let G be a simple graph with n-vertices, m edges and having Laplacian eigen-
values µ1, µ2, . . . , µn−1, µn = 0. Let the sum of the k largest Laplacian eigenvalues
of G be Sk(G) =

∑k
i=1 µi. Brouwer conjectured that Sk(G) ≤ m +

(
k+1
2

)
, for all

k = 1, 2, . . . , n. We obtain upper bounds for Sk(G) in terms of the clique number
ω, the vertex covering number τ and the diameter d of a graph G. We show that
Brouwer’s conjecture holds for certain classes of graphs.

1 Introduction

Let G(V,E) be a simple graph with n vertices and m edges having the vertex set V (G) =
{v1, v2, . . . , vn} and the edge set E(G) = {e1, e2, . . . , em}. The adjacency matrix A = (aij)
of G is a (0, 1)-square matrix of order n whose (i, j)-entry is equal to 1 if vi is adjacent
to vj and equal to 0, otherwise. Let D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix
associated to G, where di = deg(vi), for all i = 1, 2, . . . , n. The matrix L(G) = D(G)− A(G)
is called the Laplacian matrix and its spectrum is called the Laplacian spectrum (L-spectrum)
of the graph G. This is a real symmetric and positive semi-definite matrix. Further, we take
0 = µn ≤ µn−1 ≤ · · · ≤ µ1 to be the L-spectrum of G. It is well known that µn=0 with
multiplicity equal to the number of connected components of G and µn−1 > 0 if and only if

G is connected [6]. Let Sk(G) =
k∑
i=1

µi, k = 1, 2, . . . , n, be the sum of k largest Laplacian

eigenvalues of G and let d∗i (G) = |{v ∈ V (G) : dv ≥ i}|, for i = 1, 2, . . . , n. In 1994, Grone and
Merris [9] observed the following.

Theorem 1. (Grone-Merris Theorem) For any graph G and for any k, 1 ≤ k ≤ n, Sk(G) ≤
k∑
i=1

d∗i (G).

This was proved by Hua Bai [1] and is now called as Grone-Merris theorem. As an analogue
to Grone-Merris theorem, Andries Brouwer [2] conjectured the following.

Conjecture 2. If G is a graph with n vertices and m edges, then for any k, k = 1, 2, . . . , n

Sk(G) =

k∑

i=1

µi ≤ m+

(
k + 1

2

)
.

121

Using computations on a computer, Brouwer [2] checked this conjecture for all graphs with at
most 10 vertices. For k = 1, the conjecture follows from the well-known inequality µ1(G) ≤ n
(see [3]). Also, the cases k = n and k = n− 1 are straightforward. Haemers et al. [10] showed
that the conjecture is true for all the graphs when k = 2 and is also true for the trees. Du et
al. [5] obtained various upper bounds for Sk(G) and proved that the conjecture is also true
for unicyclic and bicyclic graphs. Rocha et al. [13] obtained various upper bounds for Sk(G),
which improve the upper bounds obtained in [5] for some cases and proved that the conjecture
is true for all k with 1 ≤ k ≤ bg5c, where g is the girth of the graph G (the length of smallest
cycle in G is called girth of the graph). They also showed that the conjecture is true for a
connected graph G having maximum degree ∆ with p pendant vertices and c cycles for all
∆ ≥ c+ p+ 4. For the progress on this conjecture, we refer to [2, 8, 10, 12, 13].

A clique of a graph G is the maximum complete subgraph of the graph G. The order of the
maximum clique is called the clique number of the graph G and is denoted by ω. A subset S
of the vertex set V (G) is said to be a covering set of G if every edge of G is incident to at least
one vertex in S. A covering set with minimum cardinality among all covering sets is called the
minimum covering set of G and its cardinality is called the vertex covering number of G, and
is denoted by τ . The distance between any two vertices u and v is defined as the length of the
shortest path between them and the diameter d of a graph G is the maximum distance among
all pair of vertices of G. As usual, Kn and Ks,t denote, respectively, the complete graph on n
vertices and the complete bipartite graph on s+ t vertices.

If σ, (1 ≤ σ ≤ n−1) is the number of Laplacian eigenvalues greater than or equal to average
degree d, a lower bound for Sω−1(G) and an upper bound for Sσ(G) in terms of m, ∆, σ and
clique number ω of the graph can be seen in [11].

2 Upper bounds for Sk(G)

Du et al. [5] obtained an upper bound for Sk(G) in terms of clique number ω as

Sk(G) ≤ kω + 2m− ω(ω − 1). (1)

Das et al. in [4] obtained an upper bound for Sk(G), in terms of vertex covering number τ
as

Sk(G) ≤ m+ kτ, (2)

if G ∼= K1,n−1 then equality occurs.
Now, we obtain an upper bound for Sk(G), in terms of the clique number ω and the vertex

covering number τ .

Theorem 3. Let G be a connected graph of order n ≥ 2 with m edges and let ω be the clique
number and τ be the vertex covering number of G. Then

Sk(G) ≤ k(τ + 1) +m− ω(ω − 1)

2
, (3)

with equality if and only if G ∼= Kn.

It is an easy task to see that the upper bound (3) improves the upper bound (2) for k ≤
ω(ω−1)

2 . That is, for the higher values of the clique number ω, the upper bound (3) is better
than the upper bound (2). We have the following upper bound for Sk(G) in terms of the
diameter d and the vertex covering number τ .

122

Theorem 4. Let G be a connected graph of order n with m edges having diameter d and vertex
covering number τ . Then

Sk(G) ≤ (τ − bd
2
c+ 2)k +m− d+ cos

(
kπ

d

)
+

cos(πd) sin(kπd) + sin(kπd)

sin(πd)
, (4)

with equality if and only if G ∼= Pn.

A similar type of upper bound for Sk(G) in terms of diameter, was obtained by Rocha et al.
[13]. It can be easily seen that for the graphs with large number of edges, the upper bound
(6) is better than the upper bound obtained by Rocha et al. in Theorem 1 of [13]. If Ks1,s2

(s1 ≤ s2) is the maximal complete bipartite subgraph of graph G, using the fact that the vertex
covering number of Ks1,s2 (s1 ≤ s2) is s1 and proceeding similarly as in Theorem 2.2, we have
an upper bound for Sk(G) as follows.

Theorem 5. Let G be a connected graph of order n ≥ 2 with m edges having the vertex
covering number τ . If Ks1,s2 (s1 ≤ s2), is the maximal complete bipartite subgraph of graph G,
then

Sk(G) ≤ k(τ + s2 − s1) +m− s1(s2 − 1), (5)

with equality if and only if G ∼= Ks1,s2 with s1 + s2 = n.

If s1 = s2, it is easy to see that the upper bound (5) is always better than the upper bound
(2).

3 Brouwer’s conjecture for some classes of graphs

Now, we show that the Brouwer’s conjecture holds for some classes of graphs.

Theorem 6. For a connected graph G of order n ≥ 24 having clique number ω ≥ 7n
8 , we have

Sk(G) ≤ m+
k(k + 1)

2
, for all k = 1, 2, . . . , bn2 c.

Let Ωn be a family of connected graphs for which the clique number ω is one more than the
vertex covering number τ , that is, Ωn = {G : G is connected of order n with ω = τ + 1}. For
the family of graphs Ωn, we have the following observation.

Theorem 7. If G ∈ Ωn, for all k, 1 ≤ k ≤ n, then Sk(G) ≤ m+
k(k + 1)

2
.

Theorem 8. Let G be a connected graph of order n ≥ 2 with m edges having the vertex
covering number τ ≤ 1.3s1. If Ks1,s1 is the maximal complete bipartite subgraph of the graph

G, for all k = 1, 2, . . . , n, then Sk(G) ≤ m+
k(k + 1)

2
.

For connected bipartite graphs of order n, the vertex covering number τ ≤ n
2 . For the

bipartite graphs, we have the following observation.

Theorem 9. Let G be a connected bipartite graph of order n ≥ 2 with m edges having the
vertex covering number τ . If Ks1,s1 with s1 ≥ n

4 is the maximal complete bipartite subgraph of

graph G, then Sk(G) ≤ m+
k(k + 1)

2
, for all k ≤ n

7 − 1 and k ≥ 6n
7 .

Let ρ be the family of those graphs in which the removal of the edges of the clique Kω results
in a forest or a unicyclic graph. We verify Brouwer’s conjecture for some classes of graphs in
ρ.

123

References

[1] H. Bai, The Grone-Merris conjecture, Trans. Amer. Math. Soc. 363 (2011) 4463–4474.

[2] A. E. Brouwer and W. H. Haemers, Spectra of graphs. Available from:
http://homepages.cwi.nl/aeb/math/ipm.pdf.

[3] D. Cvetkovic, M. Doob and H. Sachs, Spectra of graphs-Theory and Application, Aca-
demic Press, New York, 1980.

[4] K. C. Das, S. A. Mojallal and I. Gutman, On Laplacian energy in terms of graph invariants,
Applied Mathematics and Computation 268 (2015) 83–92.

[5] Z. Du and B. Zhou, Upper bounds for the sum of Laplacian eigenvalues of graphs, Linear
Algebra Appl. 436 (2012) 3672-3683.

[6] M. Fiedler, Algebraic Connectivity of Graphs, Czechoslovak Math. J. 23 (1973) 298-305.

[7] E. Fritscher, C. Hoppen, I. Rocha and V. Trevisan, On the sum of the Laplacian eigen-
values of a tree, Linear Algebra Appl. 435 (2011) 371-399.

[8] H. A. Ganie, A. M. Alghamdi and S. Pirzada, On the sum of the Laplacian eigenvalues of
a graph and Brouwer’s conjecture, Linear Algebra Appl. 501 (2016) 376-389.

[9] R. Grone and R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math.
7 (1994) 221-229.

[10] W. H. Haemers, A. Mohammadian and B. Tayfeh-Rezaie, On the sum of Laplacian eigen-
values of graphs, Linear Algebra Appl. 432 (2010) 2214-2221.

[11] S. Pirzada and Hilal A. Ganie, On the Laplacian eigenvalues of a graph and Laplacian
energy, Linear Algebra Appl. 486 (2015) 454–468.

[12] S. Pirzada and Hilal A. Ganie, Spectra, energy and Laplacian energy of strong double
graphs, Springer Proceedings of Mathematics and Statistics, Mathematical Technology of
Networks, D. Mugnolo (ed.) 128, 175-189.

[13] I. Rocha and V. Trevisan, Bounding the sum of the largest Laplacian eigenvalues of graphs,
Discrete Applied Math. 170 (2014) 95–103.

124

Geometry of gross substitutes valuations

Stephen Raach1 and Sven de Vries2

1Trier University
2Trier University

We consider the set of gross substitutes valuations which were introduced by
Kelso and Crawford [4]. The gross substitutes condition has important applications
in auction theory, for example the existence of a Walrasian equilibrium is guaranteed
if all bidders have gross substitutes valuations. Following an idea of Lehman [5] we
interprete valuation functions v : 2N → R on N := {1, ..., n} as points in R2n−1.
In that paper the authors point out that the set of gross substitutes valuations has
Lebesque-measure zero and raise the question whether the dimension of the gross
substitutes valuations is polynomial in the number of items n. The set of gross
substitutes valuations turns out to be the union of finitely many polyhedral cones.
We answer the question showing that the dimension of each of these cones is actually
exponential in n and provide a lower bound of d 1

n+1 · (2n − n− 2)e+2n− 1 for the
cones dimension. By explicit calculation we verify that our lower bound matches
the dimension in the case of n ≤ 3 but has a deficit of 1 already in the case n = 4.

1 Introduction

The class of gross substitutes valuations has important impact on the theory of combinatorial
auctions. This is due to the nice properties that combinatorial auctions with bidders posessing
gross substitutes valuations have, as i.e. the problem of maximizing the social welfare can be
solved in polynomial time or the existence of a Walrasian equilibrium is guaranteed. Combina-
torial auctions with gross substitutes have been widely studied by Gul and Stacchetti and by
Milgrom [3, 6]. The gross substitutes condition has been introduced by Kelso and Crawford [4]
as a sufficient condition under which a salary adjustment process converges to an equilibrium
in a market consisting of firms and workers. Gul and Stacchetti [2] showed the importance of
this class by proving that the gross substitutes condition is necessary to ensure a Walrasian
equilibrium. Important steps towards understanding the class of gross substitutes valuations
were made by Murota [7], linking mathematical economics with discrete convex analysis. As a
consequence of this connection a price free description of gross substitutes could be given by
Fujishige and Yang and by Reijnierse et al. [1, 8]. We will make use of a variaton of the earlier
description to prove the main result of our paper, showing that the set of gross substitutes
valuations v : 2N → R+ interpreted as a subset of R2N consists of the union of finitely many
polyhedral cones each having dimension exponential in n . The question whether the dimension
of the mentioned polyhedrons is polynomial in n was posed by Lehmann et al. [5]. In the latter
paper, it was shown that the set of submodular valuations is full-dimensional in R2N−1. We use
their construction of a full-dimensional polyhedral subset of the set of submodular valuations

125

and some graph theory to develop an at least d 1n · 2ne + 2n − 3 dimensional polyhedral cone
contained in the set of gross substitutes valuations.

2 Preliminaries

2.1 Definitions

In this paper, we focus on a special class of valuation functions that agents in a combinatorial
auction might have. We will begin by giving a few relevant definitions. We abbreviate S ∪ {a}
by S ∪ a , S ∪ {a} ∪ {b} by S ∪ ab and v({a}) by v(a).

Definition 1. We define a valuation on n ∈ N items, using the notation N := {1, ..., n},
as a function v : 2N → R+ being nondecreasing (v(A) ≤ v(B) if A ⊆ B) and normalized
(v(∅) = 0).

Instead of the original definition of gross substitutes valuations which involves prices p ∈ Rn
+

we use the price-free characterization by Reijnierse et al. [8] which is more convenient for our
purposes:

Definition 2. Let n ∈ N . A valuation v : 2N → R+ is gross substitutes, iff v is submodular
and for all S ⊂ N ,a, b, c ∈ N \ S holds

v(S ∪ ab) + v(S ∪ c) ≤ max{v(S ∪ ac) + v(S ∪ b), v(S ∪ bc) + v(S ∪ a)}.

A trivial consequence of this definitnion is the following reformulation of which we will make
use later. A submodular valuation is gross substitutes, if for all S ⊂ N ,a, b, c ∈ N \S the triple

(
v(S ∪ ab) + v(S ∪ c), v(S ∪ ac) + v(S ∪ b), v(S ∪ bc) + v(S ∪ a)

)
(1)

has a double maximum. We call this property the triple condition.

Definition 3. A valuation v : 2N → R+ is called additive if v(S) =
∑

i∈S v(i) for all S ⊆ N .

Whilst general sums of gross substitutes valuations do not preserve gross substitutability it
is easy to prove that the sum of an additive valuation and a gross substitutes valuation is gross
substitutes.

2.2 Interpreting valuations as points of R2n−1

With the idea of analyzing the structure of certain classes of valuation functions Lehman et
al. [5] interpreted valuation functions v : 2N → R+ on n items as points of R2n−1. This means
we identify the axes of the real valued vector space R2n with the elements of 2N . Since valu-
ation functions are normalized, the value of the coordinate induced by ∅ is always 0 and it is
reasonable to omit this axis. As usual the dimension of a polyhedral cone P , dim(P), is the
cardinality of the largest linear independent subset of P .
Using the mentioned identification with the real valued vector space R2n−1 Lehman et al. [5]
showed that the polyhedral cone of the submodular valuations, Psub, is fully dimensional by
constructing the following cone Vsub.

126

Theorem 4. Let n ∈ N, n ≥ 2 with g : 2N → R+, g(S) := 1 −
(
1
2

)|S|
and H :=

{
h : 2N →

R, with h(∅) = 0, |h(S)| ≤
(
1
2

)n+2
for S ⊆ N

}
. Then Vsub := {v : v = g+h, h ∈ H} has, as a

translation of a hypercube, postive Lebesgue-measure in R2n−1 and is a subset of the submodular
valuations.

Valuations for which holds f(S) = f(T) whenever |S| = |T | = k are called symmetric for
k. Valuations for which holds f(S) = f(T) whenever |S| = |T | are called symmetric. Also,
we will use GSn ⊆ R2n−1 for the set of gross substitutes valuations.

3 A bound for the dimension of the gross substitutes valuations
describing cones

3.1 GSn is the union of finitely many polyhedral cones

Before we take a closer look at the GSn describing cones, we show that GSn actually con-
sists of the union of polyhedral cones. This statement was implicit in [5] et al. . We define
L := {(S, {abc}) for S ⊆ N, a, b, c ∈ N \ S}, F := {(S, {ab}, c) for (S, {abc}) ∈ L} and M :=
{M ⊆ F : For all (S, {abc}) ∈ L it holds either (S, {ab}, c) ∈M or (S, {ac}, b) ∈M or (S, {bc}, a) ∈
M}. Furthermore we define the cone P(S,{ab},c) := {v ∈ R2n−1

+ : vSab + vSc ≤ vSac + vSb =
vSbc+vSa} and consequently PM =

⋂
(S,{a,b},c)∈M P(S,{ab},c) for M ⊆ F . If v ∈ GSn, then there

has to exist a M ∈M with v ∈ PM . This suffices to see that GSn is the union of finitely many
polyhedral cones since Psub ∩ PM ⊆ GSn for M ∈M.

3.2 A bound for the cones in GSn

We want to find a subset M ⊆M for which PM has dimension exponential in n. Towards this
we make use of symmetric valuations for all k ≤ n except for one k and the stirling formula.
We show a simple bound:

Theorem 5. Let n ∈ N be even and GSeq
n := {v ∈ GSn : v is symmetric for k ≤ n, k 6= n

2 }.
Then, there exist M ∈M with PM ∩Psub ⊆ GSeq

n and PM ∩Psub having dimension exponential
in n.

With further machinery, we improve this to:

Theorem 6. There exist cones in GSn with dimension at least d 1
n+1 · (2n − 2− n)e+ 2n− 1.

4 Conclusion

We interpreted the set of gross substitutes valuations as a set in a real vector space and analyzed
the geometry of that set. It has been shown that this set is the union of finitely many poly-
hedral cones and we analyzed the dimension of these cones. We started with a simple bound
with the aim of showing that these cones have dimension exponential in n. After improving
this bound step by step we obtained a bound that is best possible with O(n). An important
consequence of our main result is that an arbitrary gross substitutes valuation cannot be stored
on a computer in polynomial time as the valuation takes in n exponentially many independent
values.

127

References

[1] Satoru Fujishige and Zaifu Yang. A note on Kelso and Crawford’s gross substitutes condi-
tion. Mathematics of Operations Research, 28(3):463–469, 2003.

[2] Faruk Gul and Ennio Stacchetti. Walrasian equilibrium with gross substitutes. Journal of
Economic theory, 87(1):95–124, 1999.

[3] Faruk Gul and Ennio Stacchetti. The english auction with differentiated commodities.
Journal of Economic theory, 92(1):66–95, 2000.

[4] Alexander Kelso Jr and Vincent Crawford. Job matching, coalition formation, and gross
substitutes. Econometrica: Journal of the Econometric Society, pages 1483–1504, 1982.

[5] Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreas-
ing marginal utilities. arXiv preprint cs/0202015, 2002.

[6] Paul Robert Milgrom. Putting auction theory to work. Cambridge University Press, 2004.

[7] Kazuo Murota. Discrete convex analysis. SIAM, 2003.

[8] Hans Reijnierse, Anita van Gellekom, and Jos AM Potters. Verifying gross substitutability.
Economic Theory, 20(4):767–776, 2002.

128

Coloring H-free Graphs: Structure,
Algorithms, Open Problems

Oliver Schaudt1

1RWTH Aachen, Germany

Since the 00’s the problem of coloring graphs with one (or two) forbidden induced subgraphs
has been an active topic in the graph algorithms community. By now there exist three survey
articles on this problem: by Chudnovsky, by Hell and Huang, and by Golovach et al.

In this talk I will discuss some interesting structural and algorithmic results on this problem,
some of our own work, and some open problems for future research. I will tackle certifying
algorithms and issues related to parameterized complexity in this context.

129

130

The Parameterized Complexity of the
Equidomination Problem

Oliver Schaudt1 and Fabian Senger1

1University of Cologne, Department of Computer Science,
schaudto@uni-koeln.de, senger@zpr.uni-koeln.de

A graph G = (V, E) is called equidominating if there exists a value t ∈ N and a
weight function ω : V → N such that the total weight of a subset D ⊆ V is equal
to t if and only if D is a minimal dominating set. To decide whether or not a given
graph is equidominating is referred to as the Equidomination problem.

In this paper we show that the Equidomination problem is fixed-parameter
tractable when parameterized in two different ways: the first parameterization
considers the target value t leading to the Target-t Equidomination problem.
The second parameterization allows only weights up to a fixed value k, which yields
the k-Equidomination problem.

Keywords: minimal dominating set · equidominating graph · kernelization · pa-
rameterized complexity

1 Introduction

Let G be a simple, undirected graph. A subset S of the vertices of G is called a dominating
set or simply dominating, if every vertex of G is an element of S or adjacent to a vertex
of S. If a dominating set does not contain another dominating set as a subset, it is called a
minimal dominating set. Throughout this paper we use the abbreviation mds for minimal
dominating sets.

While the main stream of the research on dominating sets in graphs focuses on the opti-
mization aspects of the problem, there are several interesting graph classes defined around this
concept.

One example is the class of domishold graphs, which was introduced by Benzaken and
Hammer in [BH78]. These are the graphs for which there are positive weights associated to
the vertices of the graph such that a subset D of vertices is dominating if and only if the sum of
the weights of the vertices of D exceeds a certain threshold t. In other words, the characteristic
vectors of the dominating sets are exactly the zero-one solutions of a linear inequality, where
the coefficients of the inequality correspond to the weights of the vertices.

This concept motivated Payan to define equidominating graphs ([Pay80]). Loosely speak-
ing, these are the graphs for which the characteristic vectors of the minimal dominating sets are
the zero-one solutions of a linear equality. Formally, equidominating graphs have the following
definition.

131

a
16

b
7

c1

3

c2

3

d
4

e
3

s1

s2

11

5

Figure 1: An equidominating graph on 8 vertices; the weights are drawn next to the vertices
and the target value is t = 23.

Definition 1. A graph G = (V, E) is called equidominating if there exists a value t ∈ N =
{1, 2, 3, . . .} and a weight function ω : V → N such that for all D ⊆ V the following equivalence
holds:

D is an mds ⇐⇒ ω(D) :=
∑

v∈D

ω(v) = t .

The pair (ω, t) is called an equidominating structure, ω an equidominating function
and t a target value.

Figure 1 shows an equidominating graph. Every mds has a total weight of 23 and further,
every subset of weight 23 is an mds. One advantage of having an equidominating structure of
the graph at hand is that one can check whether a given vertex subset is an mds in O(n) time,
when n is the number of vertices.

The Equidomination problem is to decide whether a given graph is equidominating or not.
Unfortunately, the computational complexity of this problem is unknown. It is not even clear
whether Equidomination is actually in NP.

It can be seen that the following problem is coNP-complete: given a graph G, a weight
function ω and some number t ∈ N, the question is: is (ω, t) an equidominating structure of G?
This remains true in the seemingly simple case when G is just the disjoint union of edges. That
can be seen by applying literally the same reduction from the Weak Partition problem given
by Milanič et al. ([MOR11]), who proved coNP-completeness for the the analogous problem of
equistability.

We remark that there is no characterization of the class of equidominating graphs in terms of
forbidden induced subgraphs: if one attaches a pendant vertex to every vertex of an arbitrary
graph (the so-called corona of a graph with K1), the resulting graph is equidominating. The
only existing result in this direction (see Theorem 2 in [Pay80]) characterizes graphs that are
both equidominating and domishold. Further, it is shown in [Pay80] that threshold graphs are
equidominating.

To get a grip on the computational complexity of the problem, we introduce the following
two parameterized notions of equidomination.

Definition 2. For a given t ∈ N a graph G = (V, E) is called target-t equidominating if
there is an equidominating structure of the form (ω, t) for G.

Definition 3. For a given k ∈ N a graph G = (V, E) is called k-equidominating if there
exists an equidominating structure (ω, t) with ω : V → {1, . . . , k} for some t ∈ N. In this
case, ω a k-equidominating function and the pair (ω, t) is said to be a k-equidominating
structure.

132

Note that a k-equidominating graph is also k′-equidominating for all k′ ≥ k. It is clear that
every target-t equidominating graph is also t-equidominating since every vertex is contained
in some mds and thus its weight cannot exceed t. The opposite, however, is not true. Indeed,
the edgeless graph on t + 1 vertices is k-equidominating for every k ∈ N but not target-t
equidominating.

In our paper, we study the following two parameterized versions of the Equidomina-
tion problem:

k-Equidomination:

Instance: A graph G and k ∈ N.
Parameter: k.

Problem: Decide whether G is k-equidominating.

Target-t Equidomination:

Instance: A graph G and t ∈ N.
Parameter: t.

Problem: Decide whether G is target-t equidominating.

We show that both the k-Equidomination problem and the Target-t Equidomination
problem are fixed-parameter tractable (FPT). We do this by using the so-called kernelization
technique: we construct a regarding the considered problem equivalent subgraph the size of
which is bounded by a function of the fixed parameter. To obtain the kernels we we first
decompose a given graph into blocks such that vertices of different blocks cannot have the
same weights in an equidominating structure. The decomposition is based on the so-called
twin relation. Secondly we apply four different reduction rules to the blocks.

Further, we give FPT-algorithms for both problems by applying an XP-algorithm to the
kernels. The XP-algorithms has a running time of O

(
nm2 + nkkk + n2k+2k−k−1 + k3k+3

)
for

the k-Equidomination problem and uses the decomposition, too. It can also be used for
the Target-t Equidomination problem. The algorithm mainly follows the ideas and the
algorithm for the k-Equistability problem of Levit et al. ([KMS16, LMT12]). However, it
has to be extended in the equidominating case. For a given graph on n vertices and m edges,
the construction of the kernel and the application of the XP-algorithm leads to a running time
of O(nm2 +n2 +4t2+tt2(t+1)) for the Target-t Equidomination problem and O(nm2 +n2 +
4k2+kk8(k+1)) for the k-Equidomination problem.

References

[BH78] C. Benzaken and P.L. Hammer. Linear separation of dominating sets in graphs.
In B. Bollobs, editor, Advances in Graph Theory, volume 3 of Annals of Discrete
Mathematics, pages 1 – 10. Elsevier, 1978.

[KMS16] Eun Jung Kim, Martin Milanič, and Oliver Schaudt. Recognizing k-equistable graphs
in fpt time. Graph-Theoretic Concepts in Computer Science: 41st International
Workshop, WG 2015, Garching, Germany, June 17-19, 2015, Revised Papers, pages
487–498, 2016.

[LMT12] Vadim E. Levit, Martin Milanič, and David Tankus. On the recognition of k-
equistable graphs. In Graph-Theoretic Concepts in Computer Science, volume 7551

133

of Lecture Notes in Computer Science, pages 286–296. Springer Berlin Heidelberg,
2012.

[MOR11] Martin Milanič, James Orlin, and Gábor Rudolf. Complexity results for equistable
graphs and related classes. Ann. Oper. Res., 188:359–370, 2011.

[Pay80] Charles Payan. A class of threshold and domishold graphs: equistable and equidom-
inating graphs. Discrete Mathematics, 29(1):47–52, 1980.

134

Scheduling of Time-Dependent Asymmetric
Nonmonotonic Processing Times

permits an FPTAS

Helmut A. Sedding1

1Ulm University, Institute of Theoretical Computer Science, 89069 Ulm, Germany

In classical scheduling models, the given processing times are constant. In the
field of time-dependent scheduling, the processing time of a job is defined by a
function of start time. Here, most portrayed models are restricted on monotonic
processing time functions. Recently, a model with an absolute value function is
introduced and shown to be NP-hard in its decision version. We extend this model
to allow for asymmetric and job-specific slopes. For problem instances with agree-
able conditions it is possible to derive an FPTAS. This closes the gap to known
monotonic piecewise-linear models in the literature.

1 Introduction

Research on single machine scheduling focuses on the optimization of a job sequence for a
given objective. In the case of variable processing times, a common objective is to minimize
the makespan of the schedule. In time-dependent scheduling, as reviewed in [4], the processing
time pj(tj) of each job j depends on the job’s start time tj . Let us consider processing time
functions in the form of pj(tj) = lj + qj(tj). If qj is monotonic and equal for all jobs, the
sequencing problem is solvable in polynomial time by sorting the jobs nonincreasingly by lj [12].
For job-specific qj , the monotonic, linear form qj(tj) = bj tj with bj > 0 is also solved by sorting
the jobs, in this case nonincreasingly by lj/bj [1]. Allowing for the piecewise-linear, job-specific,
monotonic function qj(tj) = max{0, bj (tj−Tj)} for a given Tj , the problem becomes NP-hard
(as usual, shown for the decision version), but permits a fully polynomial time approximation
scheme (FPTAS) [2, 9, 10]. The symmetric problem qj(tj) = max{−aj (tj − Tj), 0}, with
aj ∈ (0, 1), behaves likewise: it is NP-hard and has an FPTAS [3, 7].

These well known monotonic forms are joined in q̃j(tj) = max{−aj (tj−Tj), bj (tj−Tj)}. As
visualized in Fig. 1, this processing time function is non-monotonic, convex, job-specific and
piecewise-linear. Starting a job earlier or later than at the ideal time Tj results in an increased
processing time. This is similar to the classic early/tardy objective, where due date deviation
is minimized. However, we may note that the transfer of results is nontrivial. See, for example,
the effect of swapping two jobs. In early/tardy scheduling, this has no effect on the timing of
other jobs. Whereas if the jobs change their processing time, this leads to a ripple effect, as
the timing of all succeeding jobs changes.

135

(a)

tj

pj(tj)

lj
bj

(b)

tj

pj(tj)

lj
aj

(c)

tj

pj(tj)

lj
bjaj

Figure 1: Piecewise-linear processing time functions in the literature are mostly monotonic,
either nondecreasing (a) or nonincreasing (b). We combine both models to a convex,
non-monotonic, piecewise-linear processing time (c).

In the literature, a special case of this model was introduced in [13]. They consider the
symmetric case with uniform a = aj = bj for all jobs j. A similar model is studied in [6]. Here
as well, the processing time is specified by an absolute value function. However, the deviation
is not measured from the start time. Instead, the midtime is used, which lies in the middle
between the job’s resulting start and completion time. By this, a job behaves symmetric before
and after the ideal time. For this reason, the sequencing problem with a variable start time is
solved by alternately appending and prepending jobs around the ideal time in nondecreasing
order of lj . The corresponding problem in classic scheduling is the early/tardy objective with
a nonrestrictive, i.e., large common due date, and it is solved by the same procedure [8]. On
the other hand, the variant of a restrictive common due date is NP-hard [5]. This is also the
case in the described time-dependent problem with a fixed start time. Here, NP-hardness is
shown by reduction of the even-odd partition problem [6].

We aim for a deeper understanding of the problem and address the classification of its
complexity. This motivates the search for an approximation algorithm. The monotonic variant
of our problem, with either aj = 0 or bj = 0, is NP-hard permit an FPTAS [7, 9, 14]. In fact, it
is possible to extend on the scheme of [14] to construct an FPTAS for both aj > 0 and bj > 0.
Moreover, it allows for job-specific aj and bj if they are agreeable. The term agreeable was
coined in [11] for the weighted tardy scheduling problem 1 ||∑j wjTj . They observe that the
problem is solvable in pseudopolynomial time only with agreeable weights, else it is NP-hard
in the strong sense.

2 Problem definition and properties

In this section, we define the studied single machine time-dependent scheduling problem P and
describe several properties.

Definition 1 (P: 1
∣∣pj = lj + max{−a (tj − T), b (tj − T)}

∣∣Cmax). Given factor a ∈ (0, 1)∩Q,
b ∈ Q≥0, an ideal start time T , a set of n jobs J , and for each job j ∈ J a base length lj ∈ Q≥0.

A variable job sequence S : J → {1, . . . , n} assigns each job to a position. The completion
time of a job j ∈ J , for start time tj, is

Cj(tj) = tj + lj + max{−a (tj − T), b (tj − T)}.

The first job j ∈ J in the sequence, S(j) = 1, starts at time 0, i.e., tS−1(1) = 0. The
succeeding jobs j ∈ J , S(j) > 1, start at the completion time of the predecessor, i.e., tS−1(i) =
CS−1(i−1). The objective is to minimze makespan Cmax = CS−1(n).

136

The completion time function Cj(tj) is monotonically increasing. This eliminates the need
for idle time, which would increase the objective value.

If all jobs j ∈ J are either early (tj < T) or tardy (tj ≥ T), the makespan can be calculated
in a closed formula.

Property 2. Given an instance of P and a sequence S that starts at a time t̃.

(a) Let

XJ(t̃) = t̃ ·
∏

j∈J
(1− aj)−1 +

∑

j∈J
lj ·

∏

k∈J, S(k)≥S(j)
(1− ak)−1. (1)

If XJ(t̃) ≤ T , then Cmax = XJ(t̃).

(b) Let

ZJ(t̃) = t̃ ·
∏

j∈J
(1 + bj) +

∑

j∈J
lj ·

∏

k∈J, S(k)≥S(j)
(1 + bk). (2)

If t̃ ≥ T , then Cmax = ZJ(t̃).

For an arbitrary ideal time T , we divide the job set J . One subset A is scheduled before
T , a straddler job χ ∈ J starts at or before T and completes at or after T , and subset B is
scheduled after T . Then again, the makespan can be expressed by a closed formula.

Property 3. Given a sequence S for an instance of P with a straddler job χ ∈ J . This yields
job sets A = {j ∈ J | S(j) < S(χ)} and B = {j ∈ J | S(j) > S(χ)}. If XA(0) ≤ T and
Cχ(XA(0)) ≥ T , then Cmax = ZB(Cχ(XA(0))).

Definition 4. Given an instance of P. If there exists sequence S of the jobs J where lj−1/aj−1 ≤
lj/aj ⇐⇒ lj−1/bj−1 ≤ lj/bj for all i = 2, . . . , n, we say that the instance is agreeable.

Assume for any agreeable instance that the jobs J = {1, . . . , n} are indexed such that
lj−1/aj−1 ≤ lj/aj and lj−1/bj−1 ≤ lj/bj for all i = 2, . . . , n.

Property 5. Given an agreeable instance of P. If the reverse sequence n, . . . , 1 satisfies the
conditions in Prop. 2(a), then it is an optimum sequence that minimizes Cmax. Analogously,
sequence 1, . . . , n is optimum if it fulfills Prop. 2(b).

To minimize the makespan of agreeable instances, we combine the result of Prop. 3 and
Prop. 5. The minimum job sequence for job set A (and, respectively, B) sorts the jobs according
to Prop. 5 with job subset A (and B). We thus need to decide on a straddler job χ ∈ J , and
partition the remaining jobs J \ {χ} into early jobs A and tardy jobs B.

3 FPTAS

We begin by introducing a dynamic programming algorithm A for agreeable instances of P. It
returns the optimum makespan C∗max and a partition of the job set J into the sets {χ}, A,B,
where χ denotes the straddler job. We repeat the following procedure for each χ ∈ J . In
each iteration j = 1, . . . , n, the algorithm creates at most two states: one by inserting job j
into set B, and a second by inserting j into A if it completes at or before T . A dynamic
programming state is represented by a vector [x, y, z] of nonnegative rational numbers. Here,
x is the makespan of the jobs in set A. The z value is the makespan of the jobs in set B when

137

starting at T ; changing their start time as in Eq. (2) scales z by factor y. After adding all jobs,
we calculate the makespan for each resulting partition {χ}, A,B as in Prop. 3. A partition
with the minimum makespan solves the given instance.

We turnA into an approximation algorithmAε for arbitrary ε ∈ (0, 1) by trimming the states
in each iteration. This principle is described, e.g., in [14]. A challenge is the exponentially
increasing z component (for an intuition, see Eq. (2)). However, we cope this by spacing
the trimming intervals exponentially increasing as well. Then, the number of states and,
accordingly, the runtime is bounded by a polynomial of the input size and 1/ε. Nontheless,
Aε yields a partition {χ}, A,B with makespan Cmax ≤ (1 + ε)C∗max. Our main result follows.

Theorem 6. Algorithm Aε is a FPTAS for agreeable instances of P.

References

[1] S. Browne and U. Yechiali. Scheduling deteriorating jobs on a single processor. Operations Research,
38(3):495–498, 1990.

[2] J.-Y. Cai, P. Cai, and Y. Zhu. On a scheduling problem of time deteriorating jobs. Journal of
Complexity, 14(2):190–209, 1998.

[3] T. C. E. Cheng, Q. Ding, M. Y. Kovalyov, A. Bachman, and A. Janiak. Scheduling jobs with
piecewise linear decreasing processing times. Naval Research Logistics, 50(6):531–554, 2003.

[4] S. Gawiejnowicz. Time-dependent scheduling. Monographs in Theoretical Computer Science.
Springer, 2008.

[5] N. G. Hall, W. Kubiak, and S. P. Sethi. Earliness–tardiness scheduling problems, II: Deviation of
completion times about a restrictive common due date. Operations Research, 39(5):847–856, 1991.

[6] F. Jaehn and H. A. Sedding. Scheduling with time-dependent discrepancy times. Journal of
Scheduling, 19(6):737–757, 2016.

[7] M. Ji and T. C. E. Cheng. An FPTAS for scheduling jobs with piecewise linear decreasing processing
times to minimize makespan. Information Processing Letters, 102(2-3):41–47, 2007.

[8] J. J. Kanet. Minimizing the average deviation of job completion times about a common due date.
Naval Research Logistics Quarterly, 28(4):643–651, 1981.

[9] M. Y. Kovalyov and W. Kubiak. A fully polynomial approximation scheme for minimizing
makespan of deteriorating jobs. Journal of Heuristics, 3(4):287–297, 1998.

[10] W. Kubiak and S. L. van de Velde. Scheduling deteriorating jobs to minimize makespan. Naval
Research Logistics, 45(5):511–523, 1998.

[11] E. L. Lawler. A “pseudopolynomial” algorithm for sequencing jobs to minimize total tardiness.
Annals of Discrete Mathematics, 1:331–342, 1977.

[12] O. I. Mel’nikov and Y. M. Shafranskĭı. Parametric problem in scheduling theory. Cybernetics, 15
(3):352–357, 1979.

[13] H. A. Sedding and F. Jaehn. Single machine scheduling with nonmonotonic piecewise linear time
dependent processing times. In Proceedings of the 14th International Conference on Project Man-
agement and Scheduling, pages 222–225. TU München, 2014.

[14] G. J. Woeginger. When does a dynamic programming formulation guarantee the existence of a
fully polynomial time approximation scheme (FPTAS)? INFORMS Journal on Computing, 12(1):
57–74, 2000.

138

A path-based formulation
for the Hydro Unit Commitment

and Scheduling problem

Dimitri Thomopulos1, Wim van Ackooij2, Claudia D’Ambrosio1, Leo
Liberti1, Raouia Taktak3, and Sonia Toubaline4

1LIX CNRS (UMR7161), École Polytechnique, 91128 Palaiseau Cedex, France
2EdF R&D, OSIRIS, France

3ISIMS&CRNS, Université de Sfax, Tunisie
4Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE, 75016 Paris, France

In this paper, we study a single-reservoir Hydro Unit Commitment Problem
in a deterministic price-taker context, where production is assumed to be gener-
ated through discrete operational points. Under some hypotheses, we present a
time expanded graph representation for the problem, where, at each time step,
nodes correspond to the discrete operational points, and arcs refer to possible state
changes. Based on the graph representation, we show that our problem reduces to
a Constrained Shortest Path Problem.

Keywords: Hydro Unit Commitment Problem, time expanded graph representa-
tion, Constrained Shortest Path Problem

1 Introduction

In energy management, unit commitment problems are strategic in day-ahead operations (e.g.,
[4]). In countries where hydro-generation is abundant (e.g., France, Brazil, Canada) specifically
dealing with the optimization of cascaded reservoirs is quite challenging too (e.g., [5]). The
reason for this is that quite some modelling detail can be required to accurately model reality.
One of the essential difficulties stems from representing the efficiency curves linking the flow
rate with the actual amount of generated power.

One particular way of dealing with this difficulty is by disposing of an a priori discretiza-
tion of it. The specific set of points is typically chosen by an operational team in order to
have maximal efficiency (highest derivatives). One advantage is that taking primary spinning
reservoirs into account becomes straightforward. This strongly contrasts with the non-linear
programming approach wherein differences of mappings need to be accounted for. Several con-
straints such as sufficient stability of adjacent flow rates (ruling out a swift increase followed
by a subsequent decrease of flow) can also be formulated more easily. When allowing for a
continuous flow rate, such a constraint would become akin to complementarity constraints.

139

In this paper we will focus on the deterministic price-taker model with a single reservoir
and potentially many discrete operational points for the underlying units. In particular, we
propose a path formulation and show that, under some assumptions, it is equivalent to classic
mixed integer programming models that can be found in the literature, see, for example, [1].

2 A path based modelling approach

We consider the single reservoir Hydro Unit Commitment Problem (HUCP) under some hy-
pothesis: i) without head effect, i.e., without considering the non-linear effect of the level of the
uphill reservoir on the efficiency ii) discrete operational points (o.p.) for the generated produc-
tion. In particular, we focus on a single reservoir composed of several units J = {1, 2, . . . , n̄}
that can be either pumps or turbines and that the different units are ordered, thus can be
aggregated in a unique unit.

2.1 Graph modelling

The main idea is to model the operational profiles of the aggregated units we are considering
by means of a graph that includes all the possible operational points at each time step, see
Figure 1. In this figure, for each time step we represent operational points of the different units
of the reservoir, assumed to be ordered. Given T the number of steps in the time horizon, the
graph shows T + 1 periods of time 0, 1, 2, . . . , T and a additional fictive period, T + 1, that will
be used in the sequel.

More formally, let us denote by G = (N,A) the graph of Figure 1, where N is the set of
operational points at each time step and A is the set of possible arcs between nodes of N . G is
a weighted directed acyclic graph. For clarity we present the graph construction for the case in
which, at each time step, the operational points are the same. However it is easy to generalize
it to the case in which each time period has different operational points. Supposing to have
z̄ operational points at each time step, we will have |N | = z̄T + 2, i.e., z̄ nodes for each time
step and 2 artificial nodes that represent time steps 0 and T + 1, respectively. In the following,
these two nodes will be also called source s = 0 and destination d = T z̄ + 1, respectively, as
they represent the initial and final node of the path representing the operational profile of the
unit.

The set of nodes N can be partitioned as follows: {0} ∪ ⋃T
t=1Nt ∪ {T z̄ + 1} where Nt =

{(t−1)z̄+1, (t−1)z̄+2, . . . , tz̄} represent the nodes that correspond to the operational points
at period t, t ∈ {1, . . . , T}. Thus, arc (i, j) ∈ A if i ∈ Nt, j ∈ Nt+1 and if it is possible to move
from the operational point corresponding to node i to the operational point corresponding to
j without violating a subset of the physical constraints of the problem. In particular, all the
constraints of the considered problem (see e.g. [1]) are automatically included in the graph
structure except: i) the bounds on the water volume at each time step, and ii) the target water
volume in the reservoir, i.e., the minimum amount of water volume that has to be reached at
the end of the time horizon. Finally, a water flow is associated to each node and a cost to
every edge equal to the difference between the unit startup costs and the power selling.

A feasible solution of the hydro unit commitment problem is represented by a path in G
between 0 and T + 1, see Figure 1. Note that the path consists of exactly T + 1 arcs. Thus,
the single reservoir HUCP, under the assumptions previously mentioned, reduces to a Shortest
Path Problem (SPP) from s to d with extra constraints, i.e., bounds on water volume of the
reservoir.

140

t

pjt/qjt

0 1 2 t′

p1/q1

p4/q4

p
u
m

p

p3/q3

p2/q2

t
u
r
b
in

e

Tt′ + 1 T + 1

Figure 1: G = (N,A)

The Constrained Shortest Path Problem has largely been studied in the literature ([3]). The
problem can be stated as a minimum-cost path problem subject to one or more resource con-
straints, a problem widely used in many Branch-and-Price algorithms (see [2]). The (Resource)
Constrained Shortest Path Problem ((R)CSPP) constitutes in fact the pricing subproblem of
many classical problems.

Different solutions methods have been proposed to solve the (R)CSPP. In all of these ap-
proaches, the resource function is assumed to be monotonically decreasing. This is not the
case of our water volume constraints. Therefore, these methods cannot be used as defined to
solve HUCP. In the following sections, we propose two approaches to solve it.

2.2 Integer Linear Programming formulation

Let us consider the weighted directed acyclic graph G = (N,A) described in Section 2.1.
Denote by:

• It = predicted water inflow in period t (t = 1, . . . , T) [m3/s].

• ∆t = period duration [s].

• [V , V] = lower and upper bounds on water volume in the reservoir [m3].

• VT = target water volume in reservoir at the end of the time horizon [m3].

• V0 = initial water volume in reservoir [m3].

• Qi = water flow corresponding to node i (i ∈ N) [m3/s],
where Qi = 0 for i ∈ NT+1.

• cij = cost of the arc i(i, j) ∈ A, depending on the cost of power generated or consumed,
on the start up costs of units, and on the pumping cost.

Let xij (∀(i, j) ∈ A) be a binary variable defined as follows:

xij =

{
1 if arc (i, j) is part of the selected path.
0 otherwise

141

The short-term single reservoir HUCP is modelled by the following integer linear program

min
x

∑

(i,j)∈A
cijxij

∑

(j,i)∈A
xji −

∑

(i,j)∈A
xij =




−1 if i = s

0 if i ∈ N \ {s, d}
1 if i = d

∀i ∈ N (1)

V ≤ v0 + ∆t

t∑

k=1


Ik −

∑

j∈Nk

∑

(i,j)∈A
Qjxij


 ≤ V ∀t ∈ 1, . . . , T (2)

v0 + ∆t
T∑

k=1


Ik −

∑

j∈Nk

∑

(i,j)∈A
Qjxij


 ≥ VT (3)

xij ∈ {0, 1} ∀(i, j) ∈ A. (4)

Constraints (1) are the flow conservation constraints that ensure a path between s and d.
Constraints (2) model the bounds on the water volume in the reservoir at time step t. Finally,
constraint (3) represents the minimum target water volume to be reached at the end of the
time horizon.

2.3 Expanded graph reformulation including the volume dimension

The second approach that we propose is a reformulation of the graph G = (N,A) considering
an additional dimension representing the volume. As we mentioned in Section 2.1, volume
constraints are not automatically considered in the graph. Thus, we propose to discretize the
volume and to add a volume dimension to the graph, that represents the water volume value
in the reservoir at time step t. In this way, all the considered constraints can be included in
the new graph structure G∗ = (N∗, A∗), where N∗ is the set of couples of operational points
and feasible volume values at each time step and A∗ is the set of possible arcs between nodes of
N∗. Finally, we propose to use standard graph techniques to solve the SPP in G∗ = (N∗, A∗).

References

[1] A. Borghetti, C. D’Ambrosio, A. Lodi, and S. Martello. A MILP approach for short-term
hydro scheduling and unit commitment with head-dependent reservoir. IEEE Transactions
on Power Systems, 23(3):1115–1124, 2008.

[2] D. Feillet. A tutorial on column generation and branch-and-price for vehicle routing prob-
lems. 4OR, 8(4):407–424, 2010.

[3] L. Di Puglia Pugliese and F. Guerriero. A survey of resource constrained shortest path
problems: Exact solution approaches. Networks, 62(3):183–200, 2013.

[4] M. Tahanan, W. van Ackooij, A. Frangioni, and F. Lacalandra. Large-scale unit commit-
ment under uncertainty: a literature survey. 4OR, 13(2):115–171, 2015.

[5] R. Taktak and C. D’Ambrosio. An overview on mathematical programming approaches for
the deterministic unit commitment problem in hydro valleys. Energy Systems, 8(1):57–79,
2017.

142

k-metric antidimension in graphs and
anonymity in social networks

Ismael G. Yero1

1Department of Mathematics, EPS Algeciras, University of Cadiz, Spain

Given a connected graph G = (V,E), and an ordered set of vertices S ⊆ V , the
metric representation of a vertex u ∈ V with respect to S is the vector of distances
between u and the vertices of S. The set S is a k-antiresolving set if k is the
largest positive integer such that for every vertex v ∈ V − S there exist at least
other k − 1 different vertices v1, . . . , vk−1 ∈ V − S such that v, v1, . . . , vk−1 have
the same metric representation with respect to S. The k-metric antidimension
of G is the minimum cardinality among all the k-antiresolving sets for G. An
application of k-antiresolving sets to privacy in social networks is described in this
work. Moreover, several computational and complexity results concerning the k-
metric antidimension of graphs are presented.

1 Introduction

Graph Theory and Social Sciences have lately witnessed a highly significant growth of their
relationships. These connections arise because of a huge popularity of social networks. For
instance, Facebook, Twitter, LindkedIn and similar ones have undergone an accelerated evolu-
tion and nowadays, society would not properly behaves without such virtual platforms, causing
an urgent demand of its study. The power of social network analysis is indeed questionless. It
might uncover previously unknown knowledge such as community-based problem, media use,
individual engagement, etc. However, all these benefits and entertainments are not cost-free.
A not well-behaved individual could compromise users privacy using the social network for
harmful purposes, which would result in the disclosure of sensitive data such as e-mails, sick-
nesses or relationships. Natural actions to avoid this consist of an anonymization process of the
social network. However, not always such anonymization process succeeds and the goal is then
to at least measuring how much privacy the social network achieves. Concerning the latter, in
this work we present some results aimed at evaluating the resistance of a social graph against
active attacks to its privacy. A new and meaningful privacy measure for social networks has
been recently introduced and theoretically studied (see [4]). Such privacy measure arises from
the concept of k-metric antidimension of graphs.

Given a simple and connected graph G = (V,E), and an ordered set of vertices S =
{w1, . . . , wt} ⊆ V , the metric representation of a vertex u ∈ V with respect to S is the t-
vector r(u|S) = (dG(u,w1), . . . , dG(u,wt)), where dG(u, v) represents the length of a shortest
u− v path in G. The set S is a k-antiresolving set if k is the largest positive integer such that
for every vertex v ∈ V −S there exist at least other k−1 different vertices v1, . . . , vk−1 ∈ V −S

143

such that v, v1, . . . , vk−1 have the same metric representation with respect to S. The k-metric
antidimension of G is the minimum cardinality among all the k-antiresolving sets for G. Since
there could not be a k-antiresolving set in a graph G for some values of k, a graph G is said to
be k-metric antidimensional if k is the largest integer such that G contains a k-antiresolving
set. Moreover, we notice that even so a graph G would be k′-metric antidimensional for some
integer k′, this does not imply that there will be k-antiresolving sets for every k ≤ k′. Concepts
above were introduced in [4] and further studied in [1, 2, 3].

If a set of attacker nodes S is a k-antiresolving set, then an adversary controlling the vertices
of S cannot uniquely re-identify other nodes in the network with probability higher than 1/k.
However, given that S is unknown, any privacy measure for a social network should quantify
over all possible subsets S. In this sense, a social network G meets (k, `)-anonymity with
respect to active attacks to its privacy, if k is the smallest positive integer such that the
k-metric antidimension of G is lower than or equal to `.

2 Results

In [1], a different approach for the k-metric antidimension of graphs was presented. Let S =
{v1, . . . , vr} be an ordered subset of vertices of a graph G = (V,E) and for any vertex x /∈ S,
consider the vector of distances dx,S = (dG(x, v1), . . . , dG(x, vr)) from x to the vertices in S.
The equality relation over a set of such vectors, all of same length, is readily seen to define
an equivalence relation. The following notations are used for such an equivalence relation over
the set of vectors DV \S,−S .

• The set of equivalence classes, which forms a partition of DV \S,−S , is denoted by Π=
V \S,−S .

• Two nodes vi, vj ∈ V \S belong to the same equivalence class if dvi,−S and dvj ,−S belong
to the same equivalence class in Π=

V \S,−S , and thus Π=
V \S,−S also defines a partition into

equivalence classes of V \ S.

• The measure of the equivalence relation above is defined as µ
(
DV \s,−s

)
= min
Y∈Π=

V \S,−S

{
| Y |

}
.

Clearly, if S is a k-anti-resolving set, then DV \S,−S defines a partition into equivalence classes
whose measure is exactly k.

In concordance with the k-metric antidimension of graphs, three problems were detected
and studied from a computational point of view in [1]. The problems are the following ones,
for which G = (V,E) represents a connected simple graph.

PROBLEM 1: [metric anti-dimension or ADIM] Given G, find a subset of nodes S ⊂ V that
maximizes µ

(
DV \S,−S

)
.

The Problem 1 simply finds a k-anti-resolving set for the largest possible k. As an interpre-
tation, a solution of it establishes a bound on the privacy violation probability of an adversary.

PROBLEM 2: [k≥-metric anti-dimension or ADIM≥k] Given G and a positive integer k, find
a subset of nodes S of minimum cardinality such that µ

(
DV \S,−S

)
≥ k, if such a S exists.

The Problem 2 finds a k′-anti-resolving set of minimum possible cardinality for some spe-
cific k′ ≥ k. In contrast, the next problem finds a k-anti-resolving set of minimum possible

144

cardinality.

PROBLEM 3: [k=-metric antidimension or ADIM=k] Given G and a positive integer k, find
a subset of nodes S of minimum cardinality such that µ

(
DV \S,−S

)
= k, if such a S exists.

All the problems above were studied in [1], where the following results were presented. As
we can see, the two first problems can be efficienttly solved, while the third one belong to the
hardest class of problems.

Theorem 1. [1]

• Both ADIM and ADIM≥k can be solved in O
(
n4
)
time.

• Both ADIM and ADIM≥k can also be solved in O
(
n4 logn

k

)
time “with high probability”

(with a probability of at least 1− n−c for some constant c > 0.

Theorem 2. [1]

• ADIM=k is NP-complete for any integer k in the range 1 ≤ k ≤ nε where 0 ≤ ε < 1
2 is

any arbitrary constant, even if the diameter of the input graph is 2.

• Assuming NP is not a subset of the class DTIME (nlog logn), there exists a universal
constant δ > 0 such that ADIM=k does not admit a

(
1
δ lnn

)
-approximation for any

integer k in the range 1 ≤ k ≤ nε where 0 ≤ ε < 1
2 is any arbitrary constant, even if the

diameter of the input graph is 2.

Although ADIM=k is NP-complete, some cases are shown to be efficiently solved, or on the
other side, the problem can be approximated as the next result shows.

Theorem 3. [1]

• ADIM=1 admits a (1 + ln(n− 1))-approximation in O
(
n3
)
time.

• If G has at least one node of degree 1, then ADIM=1 can be solved in O
(
n3
)
time.

• If G does not contain a cycle of 4 edges, then ADIM=1 can be solved in O
(
n3
)
time.

A particular problem which relates to the ones above consists of finding the graphs G in
which k = 1 is the maximam value for k such that G is k-metric antidimensional. Of course,
in such case every set of the graph is a k-antiresolving set, which means two things. The first
one is that the 1-metric antidimension of G is one, and the second one that, if an adversary
controls at least one vertex of such graph, then with certainty the attacker can recognize at
least one vertex of the graph. In order to avoid this, graphs that are 1-metric antidimensional
should be correctly detected.

It is readily seen that the particular case of 1-metric antidimensional graphs can only satisfy
(1, 1)-anonymity [4]. In this sense, the privacy guarantees against active attacks, for the case
of 1-metric antidimensional graphs represent the worst possible scenario. As a consequence,
one should abstain of publishing compromising information in such networks. According to
these facts, those classes of trees and unicyclic graphs that are 1-metric antidimensional were
studied in [3].

Given a tree T rooted in a vertex u, for any vertex v ∈ V (T), the sets p(v), C(v) and D(v)
are the parent, the children and the descendants of v in T . For a given vertex v ∈ V (T) and

145

a set A ⊂ C(v), Tv,A represents the subtree of T induced by {v} ∪ A ∪
(⋃

u∈AD(u)
)
. Now,

an u-branch of T at v is the subtree Tu,v induced by {u, v} ∪D(v). Accordint to this, two x-
branches Tx,y1 and Tx,y2 are ε-equivalent if εTx,y1 (x) = εTx,y1 (x), where εG(v) is the eccentricity
of the vertex v in G.

For any vertex x of a tree T , the balancing factor ξT (x) is the maximum number of ε-
equivalent x-branches in T . If ε-equivalent x-branches do not exist in T , then it is assumed
ξT (x) = 1.

Theorem 4. [3] Let T be a tree. Then T is 1-metric antidimensional if and only if ξT (v) = 1
for every v ∈ V (T).

In concordance with the characterization above, a polynomial algorithm that checks whether
a given tree is 1-metric antidmensional was given in [3]. Moreover, a polynomial algorithm to
solve the same problem for the case of unicyclic graphs was also presented in [3]. This was
based on the next result, which use the following terminology and notation. Given n trees
Tv1 , . . . , Tvn rooted in v1, . . . , vn, respectively, and a cycle CG = {u1, . . . , un}, we denote by
G = {Tv1 , . . . , Tvn} the unicyclic graph obtained by identifying the vertex vi with ui for every
i ∈ {1, . . . , n}. Given a vertex u of a graph G, let di(u) = {v ∈ V (G) : d(v, u) = i} for
every i ∈ {1, . . . , εG(u)}. The antiresolving factor of u in G is denoted by φG(u) and is defined
as: φG(u) = min1≤i≤εG(u){|di(u)|}. The antiresolving factor of the whole graph G (denoted by
φ(G)) is: φ(G) = maxv∈V (G){φG(v)}.
Theorem 5. [3] Let G = {Tv1 , . . . , Tvn} be a unicyclic graph. G is 1-metric antidimensional
if and only if G holds the following properties.

• For every i ∈ {1, . . . , n}, it follows that Tvi is 1-metric antidimensional.

• For every i ∈ {1, . . . , n}, every x ∈ V (Tvi) and every Y ⊆ C(x) it follows that φGi
x,Y

(x) =

1.

• If |CG| is even, then for every two adjacent vertices a, b ∈ CG, it follows that ξA(a) = 1
or ξB(b) = 1, where A and B are the two trees obtained from G by deleting the edge (a, b)
and its diametral edge.

• If |CG| is even, then for every two vertices c, d ∈ CG which are diametral in CG, there
exist two vertices vi, vj ∈ CG with d(vi, c) = d(vj , c), such that εTvi (vi) 6= εTvj (vj).

References

[1] T. Chatterjee, B. DasGupta, N, Mobasheri, V. Srinivasan and and I. G. Yero, On the
computational complexities of three privacy measures for large networks under active
attack. arXiv:1607.01438v1 [cs.CC]. Submitted (2016).

[2] S. Mauw, R. Trujillo-Rasua , B. Xuan, Counteracting Active Attacks in Social Network
Graphs. Lecture Notes in Computer Science 9766 (2016), 233–248.

[3] R. Trujillo-Rasua and I. G. Yero, Characterizing 1-metric antidimensional trees and uni-
cyclic graphs. The Computer Journal 59 (8) (2016), 1264–1273.

[4] R. Trujillo-Rasua and I. G. Yero, k-metric antidimension: A privacy measure for social
graphs. Information Sciences 328 (2016), 403–417.

146

hh

Alphabetical list of authors

Böhnlein, Toni 15
Basso, Saverio 1
Baum, Andrea 3
Bettiol, Enrico 7
Bindewald, Viktor 11
Brause, Christoph 19, 61
Bruglieri, Maurizio 23
Buchheim, Christoph 27
Camby, Eglantine 31
Caporossi, Gilles 31
Casazza, Marco 1, 35
Caurio, Vincenzo 23
Ceselli, Alberto 1, 35, 39
Chakraborty, Sankardeep 43
Chakraborty, Sourav 49
Cordone, Roberto 23, 53
D’Ambrosio, Claudia 139
de Vries, Sven 125
Detti, Paolo 57
Doan, Trung Duy 61
Dutta, Debarshi 65
Ermel, Dominik 69
Ficker, Annette M.C. 73
Fiorini, Sam 77
Fiore, Marco 39
Ganie, Hilal 121
Groshaus, Marina 79
Henning, Michael 19
Hossain, Shahadat 85
Igarashi, Ayumi 89
Jha, Nitesh 49
Jo, Seungbum 43
Kesselheim, Thomas 93
Klootwijk, Stefan 97
Kothapalli, Kishore 65
Kratsch, Stefan 15
Létocart, Lucas 7
Liberti, Leo 139
Lozovanu, Dmitrii 101
Manthey, Bodo 97, 105
Marinescu-Ghemeci, Ruxandra 109
Meunier, Frédéric 89

148

Montero, Leandro 79
Mühlenthaler, Moritz 11
Nakanishi, Misa 113
Nicosia, Gaia 57
Pacifici, Andrea 57
Pass-Lanneau, Adèle 89
Peis, Britta 117
Pickl, Stefan 101
Pirzada, Shariefuddin 121
Premoli, Marco 39
Prünte, Jonas 27
Raach, Stephen 125
Ramakrishna, Gadhamsetty 65
Reguntas, Sai Charan 65
Reijnders, Victor M.J.J. 105
Righini, Giovanni 53
Rinaldi, Francesco 7
Satti, Srinivasa Rao 43
Schaudt, Oliver 15, 129, 131
Schiermeyer, Ingo 61
Secci, Stefano 39
Sedding, Helmut A. 135
Senger, Fabian 131
Spieksma, Frits 73
Suny, Ashraful 85
Tönnis, Andreas 93
Taktak, Raouia 139
Taverna, Andrea 53
Thomopulos, Dimitri 139
Tondomkers, Sai Harsh 65
Toubaline, Sonia 139
Traversi, Emiliano 7
van Ackooij, Wim 139
Verschae, José 117
Walter, Matthias 69
Wierz, Andreas 117
Woeginger, Gerhard J. 73
Wolfler Calvo, Roberto 35
Yero, Ismael González 143
Zabalo Manrique de Lara, Garazi 57
Zhu, Yida 3

149

hh

hh

